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A copy of these lecture note can be downloaded from https://www.researchgate.net/
profile/Massimo-Borelli, or from the course public website https://ictpmmp.weebly.
com/. All the dataset are publicly available at https://github.com/MassimoBorelli/Miramare,
both in .csv and in .ods format.

1.1.1 Shifting Statistics from Physics to Medicine

Many of us have a more or less solid background in calculus and in probability; terms like
average, moment, expected value, finite integral are familiar. And if we open whatever book of,
for instance, Statistical Mechanics (here above the first page of Pathria and Beale [40]), we find
no difficulty in dreaming (’it is customary’ ) about those N particles growing and growing, until
reaching a so huge number called •. On the contrary, in medical statistics N can be ridiculously
small – this is the reason why in medical statistics hardly we can perform ’experiments’ to grab an
unknown Nature’s variability; hardly we can distinguish a ’confounding factor’ from the ’reality’;
hardly we can ’improve the sample size’. Another important topic (the most important one would
say) is that when we talk about j 2 {1, ...,N}, that j could our mother, our son, ourselves: medical
statistics therefore involves important ethical questions and requires important privacy laws respect.

1.2 Which is the ’best’ software for medical statistics?
Well, it depends. If you are required to perform ’heavy’ computation, a programming language like
R or Python will be needed. Otherwise, a simpler ’statistical suite’ like R Commander, Jamovi
or JASP could be preferred. Let us spend a few word to introduce them.

1.2.1 The R language
R is an open source software environment for statistical computing and graphics, which can be
freely downloaded from the so-called CRAN (the Comprehensive R Archive Network) world-wide
mirrors: https://cran.r-project.org/mirrors.html. R runs on UNIX/Linux, Windows and
MacOS platforms. You can also exploit the cloud computing facilities, and compile online your
script into https://rdrr.io/snippets/.

www If you are interested in some historical details, Nick Thieme has published an article[48] which
recalls the astonishing success of R, born more ore less twenty five years ago in Auckland
University by the ideas of two statistics professors: Ross Ihaka and Robert Gentleman.
Other details are provided by Carlos Alberto Gómez Grajales in his Created by statisticians
for statisticians: How R took the world of statistics by storm appeared on http://www.

statisticsviews.com/view/index.html.
Of course, R is very well documented; for instance, you can find free on line introductory
books, as the Hadley Wickham and Garrett Grolemund textbook [53] R for data science,
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available at https://r4ds.had.co.nz/, or as the Kim Seefeld and Ernst Linder textbook
Statistics Using R with Biological Examples, available at https://cran.r-project.org/
doc/contrib/Seefeld_StatsRBio.pdf. There are also lots of webpages, blogs and
Moocs concerning R; for instance:

• http://ncss-tech.github.io/stats_for_soil_survey/chapters/

• http://www.sthda.com/english/wiki/r-software

• Quick-R, https://www.statmethods.net/
Many video tutorials are also available on YouTube, following the query https://www.

youtube.com/results?search_query=R+tutorial.

Instead of working directly on the R Console, many scientists prefer to use R Studio https:
//www.rstudio.com/ Integrated Development Environment (IDE).

Figure 1.1: R Studio is preferred by many researchers and data analysts, ensuring a stable and well
integrated programming and graphing enviroment. A fatal drawback is its ’steep learning curve’:
the newcomer has to practice quite a lot of time in managing syntaxes and commands – besides the
effort in learning Statistics.

Being R a programming language, of course, you can start copying and pasting code chunks
from all around the web, just ’googling’ what you need. But in order to master the language you
have to spend a lot of time to practice: newcomers find frustrating to search for the ⇠ symbol on
the keyboard, or feel stuck when they copy some code form a pdf, in which it is written x – y (with
the four point ’en dash’) but the software needs to read x - y (with the minus, i.e. the three point
’hyphen’). These are just two of the main reason why in our short course, alas!, we skip the effort
to learn it. But one possible recovery plan it exist: to adopt a G.U.I., a graphical user interface – let
us see in the next page.
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1.2.2 The R language user graphical interfaces
Beginners often find sufficient to access to a selection of commonly-used R commands using
’familiar’ graphical user interfaces, as R Commander, https://www.rcommander.com/, or as
Jamovi, https://https://www.jamovi.org/.

Figure 1.2: The R Commander appearance: you see a menu environment with an input section,
named R Script, which has been created by the File | New Script procedure; and an Output
section which lists the input commands and produces the outputs. Below, the gray backgrounded
section provides Messages alerting for possible mismatches.

Figure 1.3: The Jamovi environment, which integrates the spreadsheet capabilities in managing
raw data and a menu of typical R analysis commands. The user manual https://www.jamovi.
org/user-manual.html helps the beginner to learn the basic procedures.

1.2.3 JASP
About ten years ago, a group of people belonging to social research areas (mainly from Amsterdam
University, https://cordis.europa.eu/project/id/283876) started to work on a sort of
’free and open SPSS’, which has been a sort of lingua franca spoken by psychometrists. The idea
was brilliant: to use R as an hidden engine (in particular, to exploit the package BayesFactor)
and to pack it with a ’drag and drop’ interface: their result was the creation of JASP, which
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can be freely downloaded from: https://jasp-stats.org/team/. Their original goal was
to promote the Bayesian hypothesis testing approach in social sciences, recognising that major
advances in computational statistics should have had a positive impact over the old-fashioned (or,
as they said, even inappropriate) psychometric metodologies. JASP is also very well documented,
and newcomers can start reading https://jasp-stats.org/getting-started/, or https:
//jasp-stats.org/how-to-use-jasp/; very valuable are also the free manuals, https://
jasp-stats.org/jasp-materials/. We will discuss better the details along these lecture notes.

Figure 1.4: The official JASP web page, https://jasp-stats.org/

1.3 Exercises.
⌅ Activity 1.1 — protecting privacy in a spreadsheet. In hospitals, to use the spreadsheet
(Microsoft Excel, Libre Office Calc, Google Sheets, iOS Numbers, ...) in order to collect data
is routinary. Remebering what announced in section 1.1.1, the privacy is an important issue –
but very often biostatistician are required to analyse data not properly masked, in which private
information (e.g. name, surname, date of birth, ...) are disclosed. As an exercise, download on your
computer the privacy dataset (at https://github.com/MassimoBorelli/Miramare), explore
it with your favourite spreadsheet and create a new column of data by means of a text function (or
joining together the outputs of different text functions) in order to provide a unique identifier for
each row (’record’) of the dataset. ⌅





2. Data Presentation

2.1 Background

www Elise Whitley, Jonathan Ball. Statistics review 1: Presenting and summarising data
https://ccforum.biomedcentral.com/articles/10.1186/cc1455

The first goal to achive in any data analysis is to ’understand’ them, to describe and to summarize
them in a proper way (being not too much verbose; or not too much cryptic). Such analysis may
enlight ’strange’ values (outliers), which very high or very low with respect to the rest of the
data. Tables and graphs are the usual way to summarize large amounts of information and the
above review recalls the basics, providing examples of qualitative data (unordered and ordered) and
quantitative data (discrete and continuous). In their review, Elise Whitley and Jonathan Ball recalls
in which way the previous types of data can be depicted, enhancing the two important features of a
quantitative dataset: the location of the data and their variability. Common measures of location
(mean, median and mode) and of variability (range, interquartile range, standard deviation and
variance) are revised.

www Alla Katsnelson. Colour me better: fixing figures for colour blindness
https://www.nature.com/articles/d41586-021-02696-z

We do not forget that, all around the world, the color vision deficiency in male is estimated to be
around the 5 – 10 percent of the population: this in an invitation to prefer, in any possible occasion,
to adopt the so called viridis color palette in your graphs, and to enhance different informations
also by means of different graphical coding (solid, dashed, dotted, ...)

2.2 Descriptive Statistics in JASP
Let us start exploring JASP capabilities in summarizing and presenting data. For simplicity we
refer to a very famous example, the iris dataset by Ronald Fisher [19] and Edgar Anderson [4].
Nowadays the iris dataset is commonly used by computer scientists when they want to test their
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softwares’ performances in supervised learning, and this is probably the reason why JASP stores it
into the ’Machine Learning’ folder:

We are not interested now in discussing what is K-Means Clustering; but looking to the Results
section on the right, we can read a description of the dataset, composed by 150 rows and 5 columns,
named respectively Sepal.Length, Sepal.Width, Petal.Length, Petal.Width and Species.
The first four columns provide numerical data, while the last column provide qualitative information
about the three different species (Setosa, Versicolor and Virginica) of flowers considered. Scrolling
down the Results section we can immediately see a set of nice coloured graphs, depicting certain
function densities and a scatterplot with three coloured point clouds.

Acting on the ’Remove this analysis’ red button, we can start our first exploration. We recognize the
dataset, we observe that Sepal.Length, Sepal.Width, Petal.Length, Petal.Width are signed
with an orange Scale ruler, while Species has three Venn diagrams, identifying the Nominal
variables. The software suggest this classification as a default, but we can modify it simply clicking
on the icons. Being satisfied of the situation, we can start the analysis clicking the Descriptives
menu:
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2.2.1 Numerical summaries
Now let us practice with JASP Descriptives menu to provide answers to the following requests:

Exercise 2.1 — location measures. Exploring the iris dataset, say:
• how much is the mean of Sepal.Length?
• how much are the medians of Sepal.Width, distinguing between the three Species?

⌅

Previous exercise allows us to discover how to ’split’ by means of a nominal variable a numeric
variable, and to verify that the tables produced by JASP are ready to be copy and pasted both in
’Word’ and LATEX format. We want to recall that the Scale / Ordinal / Nominal variable taxonomy
is not universally accepted. The R language calls numeric what Martin Bland [7] defines to be
a quantitative variable. On the contrary, an R factor (i.e. a qualitative or a nominal variable,
according to Martin Bland), is a list of different ’groups’ which are called the levels (ordered or
unordered) inside the factor.

Discussion 2.2.1 — other position and dispersion measures. Look at the picture above. Are
you able to define all the measures of central tendency (or measures of location)? And can
you define all the (not blurred) measures of shapes, or measures of dispersions) calculated by
JASP? We will discuss better the concepts of quantiles but, if you need a refresh, a recommended
book may be that by professor Joe Blitzstein (Harvard University) and Jessica Hwang (Stanford
University), entitled Introduction to Probability [8]. Professor Blitzstein also offers a free edX
course and a free copy of his must-read book:

www Jonathan Blitzstein, Jessica Hwang. Introduction to Probability.
https://projects.iq.harvard.edu/stat110/home
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Exercise 2.2 — frequencies. Create the following frequencies table: ⌅

Species Frequency Percent Valid Percent Cumulative Percent

setosa 50 33.333 33.333 33.333
versicolor 50 33.333 33.333 66.667
virginica 50 33.333 33.333 100.000
Missing 0 0.000
Total 150 100.000

Looking to the frequencies, we can not see the typical central tendency measure of nominal
data: the mode of the distribution (i.e. the group having the highest frequency). Nevertheless, it is
correct to exploit the mode also with ordinal and scale variables: as an example, in the sequel we
will discuss of the famous bimodal female vs. male height distribution.

Vocabulary 2.1 — balanced dataset. The iris dataset is said to be balanced as we observe
data with the same absolute frequencies in each group considered. In our example, fifty flowers
belonging to each of the (levels of the) Species setosa, versicolor and virginica have
been measured.

Vocabulary 2.2 — complete dataset. A dataset is said to be complete when we do not observe
any missing data, or missing values, usually represented with the symbol NA.

It may happen that different systems or different researchers adopt various way to code the missing
information. While NA is the preferred one, the symbol NaN (= ’not a number’, e.g. 0/0). JASP
allows to manage this modifying the Preferences. A caveat: always avoid to use ’blank cells’ when
having missing information.

Not so often, other descriptive measures implemented in JASP are evaluated:
• the coefficients of variation, which is the ratio between the mean and the standard deviation.

’Coefficients of variation are particularly useful when observations with different dimensions
are being compared, such as UK sterling and US Dollars. A dimensionless measure of
dispersion is then very convenient.’ (R. Mould, 2.5 [37])

• the median absolute deviation, which is – as a word pun – the median of the abso-
lute deviation from the median, https://en.wikipedia.org/wiki/Median_absolute_
deviation
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2.2.2 A picture is worth a thousand words

www Yan Holtz. The R Graph Gallery.
https://www.r-graph-gallery.com/

Thanks to the the powerful graphical capabilities of R, JASP allows to easily depict data distributions
and summaries. Let us see them in a brief review, having in mind that different types of variables
(nominal, ordinal, scale) requires different graphics.

Pie charts

Exercise 2.3 Depict the frequencies of Species by a pie chart, choosing the viridis palette. ⌅

Dot plots

Discussion 2.2.2 — what is an ’informative’ picture?. We are not able to provide a math-
ematical definition of what is an ’informative’ drawing; anyway, when we try to depict the
dotplots of the Sepal.Length splitted over the three Species we can not ’easily grab’ what is
happening. Do you agree?

Distribution plots

Let us spend a couple of minutes to clarify the difference between the barplot and the histogram:
both of them fall inside the ’Distribution plots’ denomination adopted by JASP. But the former
is properly named when we are drawing (nominal or) ordinal data, while the latter requires data
collected along a continuous scale of measure. In fact, talking about histogram, Richard Mould
[37] writes in his 1.4 paragraph:

In a histogram, the height of each vertical block does not always represent the value of the
variable of interest (unless the width of the block is unity), as is the case of a bar in a bar chart.
Also, in a histogram, the horizontal scale is continuous and not, like the bar charts, discrete.
Also, unlike a bar chart width, a histogram block width does have a meaning.

Therefore let us explain in a precise way [28] the idea of relative frequency histogram, which is a
central concept naturally linked to ’probability density function’ concept. Let x = (x1,x2, . . . ,xn)
be the n numeric data considered and let c1 < c2 < c3 < .. . < cr , 2  r < n, a class partition with
cut-off c j’s, such that c1 = min(x) and cr = max(x). We obtain r�1 limited disjoint classes (or
bins):

C1 = [c1,c2] , C2 = (c2,c3] , C3 = (c3,c4] , . . . , Cr�1 = (cr�1,cr]

Denote with n j the absolute frequencies of the x data falling into each class Cj, and let f j = n j/n
the relative frequencies (1  j  r�1). With these choices, the relative frequency histogram is
made by r�1 rectangles of bases Cj and heights:

h j =
n j/n

c j+1 � c j
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Discussion 2.2.3 Draw the distribution plot of Petal.Length. Is it a barplot? Is it a relative
frequency histogram? Tick the box Display density. Is now the picture a relative frequency
histogram?

the Boxplot and the Quartiles

Exercise 2.4 Draw the boxplot of Petal.Length, in grey color. Then draw the boxplots of
Petal.Length splitted by Species according to ggplot2 palette. ⌅

Figure 2.1: The boxplot.

The legendary chemist, mathematician and statistician John W. Tukey (https://en.wikipedia.
org/wiki/John_Tukey) introduced this type of data visualization, providing the so called five
point summary. In fact, when we deal with ordered (or scale) data, as in Petal.Length variable,
we can suppose without loss of generality that the sample x = (x1,x2, . . . ,xn) is already ordered,
x1  x2  . . . xn. Obviously, x1 is the minimum and xn is the maximum. Now we can consider
the index n/2, which is integer in n is even (but if n is odd we can arrange the situation a little,
chopping or rounding away the decimal, eventually averaging the x’s): we are now in presence of
the median, xn/2.

Vocabulary 2.3 — Quantiles. Let us denote with L the median of x: L divide the sample x into
two subsets, the first half and the second half. If we compute the medians of those two halves we
obtain respectively the first quartile Q1 and the third quartile Q3 (being the median L the second
quartile, min(x) the zeroth quartile and max(x) the fourth quartile). If we split x in ten sections
instead of two, one can define the first, second, ... deciles. And again, splitting x in one hundred
sections, we compute the percentiles. Quartiles, deciles and percentiles are examples of quantiles.

The spacings between the different parts of the coloured box (which, of course, encompasses the
50 per cent of the data) indicate the ’degree’ of dispersion (spread) and the ’skewness’ in the data.
The two wiskers describe the tails of the distribution, ’short’ or ’long’.

As we can see, in the red setosa and in the green versicolor boxplots some isolated points
appear. They are the so-called outliers, as defined by Tukey himself: consider the interquartile
range , IRQ = Q3�Q1, ’amplify’ it by a 50% , 1.5 · IRQ, and search if there are points x j 2 x such
that x j < Q1�1.5 · IRQ or x j > Q3+1.5 · IRQ. It can be shown (e.g. [27, page 29]) that outliers
are not so rare in experimental measures: asymptotically, 0.7% of data.
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Scatter Diagrams

Exercise 2.5 Draw the scatter plot of Petal.Length versus Petal.Width. ⌅

JASP offers two possibilities to draw a cartesian x-y scatter plot: the ’basic’ one (called the
Correlation plot) and the ’customizable’ variant. We will discuss the details in the next chapters.

www There exists – although not so frequently used (unfortunately, I say) – the Rousseeuw &
Ruts & Tukey bidimensional version of the boxplot, which is called the bagplot, https:
//en.wikipedia.org/wiki/Bagplot. In JASP it is not currently implemented, but in R
you have it, available in the ’Another PLot PACKage’ aplpack [44].

2.3 Which are ’the best’ Descriptives?
Once upon a time, the skewness (https://en.wikipedia.org/wiki/Skewness) measure of
asymmetry and the kurtosis (https://en.wikipedia.org/wiki/Kurtosis) measure of ’fat
tails’ were commonly calculated and used in literature to describe data distribution. Nowadays
these concepts seems to be buried in dust, even if JASP allows you to calculate them. Nevertheless,
skewness plays an important role in data description – and a boxplot reveals it immediately. In
fact, when our mind try to perceive the data distribution only knowing some numerical descriptive
statistics, some pitfalls can occur. To be more clear, let us make some examples caught from
literature.

Consider for instance two studies: the first of Petteri Hovi and his colleagues [26], on glucose
regulation in young adults with very low birth weight https://www.nejm.org/doi/pdf/10.
1056/nejmoa067187; the second of professor Kersti Pärna and her colleagues [39] regarding the
alcohol consumption in Estonia and Finland, https://doi.org/10.1186/1471-2458-10-261.
Have a look to their Tables:

Maybe, the researchers, after having watched the shape of the data distribution, have decided
that in the first study the numbers behave in a symmetric and unimodal way, and therefore the
symbol µ ±s (i.e. mean plus or minus standard deviation) to summarize data distribution can
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be a proper choice. And, very likely, the second team realized that the weekly mean of alcohol
consumption had a very long right tail, and they avoid the symbology µ ±s which should have
trapped the unaware reader in a pitfall, i.e. that in Estonia there might exists some drinkers whose
body do not consume, but ’produce’ alcohol during the weekend (as 128�147 =�19!).

This is the reason why, when data are skewed, many authors recommend to avoid to describe
them using the mean and the standard deviation, and to prefer using the Tukey five numbers sum-
mary. There is also a well-posed mathematical reason to prefer such a recommended choice: the Če-
bišev inequality. In fact, https://en.wikipedia.org/wiki/Chebyshev%27s_inequality#
Probabilistic_statement, it is possible to create a set of artificial data x, all of them extremely
far away from the mean, such that P(|x�M|� S) = 1.

Another pivotal point in the correct reporting of statistical facts concerns the well known
Occam’s Razor principle – Frustra fit per plura quod potest fieri per pauciora: it is not worth
to provide a number of statistics greater than the collected data dimension. Here you have a
funny example: suppose that Expert A checks 4439 images, and Expert B checks 4686. Suppose
you want to communicate these two pieces of information: how would you write it in a paper?
Have a look to three information solution chosen by Christer Sinderby and colleagues [45],
https://ccforum.biomedcentral.com/track/pdf/10.1186/cc13063.pdf

2.4 Exercises
⌅ Activity 2.1 — describe a dataset. Search and read the paper by Mara Severgnini, Mario
de Denaro et al., entitled In vivo dosimetry and shielding disk alignment verification by EBT3
... (PMID 25679150). Read and understand the data of their Table 1 (page 118). Download the
dataset breastioert from the repository https://github.com/MassimoBorelli/Miramare
and import it into your JASP.

• obtain a table reporting absolute frequencies and relative frequencies of Energy
• obtain the median and compute the interquartile range of the Collimator Diameter
• obtain a boxplot of the Area outside shielding
• obtain a cartesian x-y scatter plot of the Area outside shielding versus the Difference Expected

Dose and Measured Dose
Report the four outputs obtained, eventually arranged in a more readable form and go to

https://ictpmmp.weebly.com/assignements.html in order to upload your report, complete
with your name and surname, in a .pdf document.

⌅



3. Probability in medicine

3.1 Brief recalls on random variables
In medical statistics very often one deals with finite random variables. As an example (Table 4.3
in Bernard Rosner [43, page 84]) consider the number of episodes of otitis media in the first two
years of life:

✓
0 1 2 3 4 5 6

0.129 0.264 0.271 0.185 0.095 0.039 0.017

◆

The first row describe all the possible events, while the second row precise their single success
probability; and the function which associates the event to its probability is called probability
mass function, or discrete density function. In effect, those probabilities are simply a frequencies
distribution, as we were dealing in Exercise 2.2: you can verify it by loading the otitis dataset
from the https://github.com/MassimoBorelli/Miramare repository, and draw a barplot as
explained in subsection 2.2.2.

Figure 3.1: Estimating the probability density function of a continuous random variable

Moving to infinite random variables, JASP (or, better, the R language) possesses an inner algo-
rithm which (depending on the user’s choice of a bandwidth and of a kernel) fits a numerically
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estimated density function, as in the right panel of Figure 3.1. Such curve relies on the histogram,
which is of course an estimator[50] of the density function (which, in turns, depends on the starting
point of the grid of bins – and the effect can be surprisingly large, as Venables and Ripley explain
very well in their Figure 5.8 [50, pages 127-128]). The figure here depicted in right panel represents
the AgePatient of the roma dataset, which will be presented in a while.

3.2 Commonly used random variables

JASP possesses an additional menu which allows to study and to simulate the data random behaviour.
Let us recap some basic facts on the most frequently used random variables in the medical field.

3.2.1 The Normal Distribution

With JASP it is straightforward to perform calculations with the gaussian random distribution.
The Show distribution menu provide to the user a nice way to reflect over the mathematical
relations between the density function, the cumulative distribution and the quantile function, also
highlighting the density and the probability evaluated over an interval, bounded or unbounded.

Let us try to move the parameters µ and s2 of the distribution in order to solve some typical
textbook exercises.
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Exercise 3.1 (B. Rosner, example 5.22 [43, page 131]) The cerebral blood flow (CBF) in the
general population is, approximately, normally distributed with mean µ = 75 and standard
deviation s = 17. Which could be the percentage of persons having a CBF < 40? ⌅

Exercise 3.2 (B. Rosner, example 5.23 [43, page 132]) Glaucoma is characterized by intraocular
pressure greater than 20 mmHg, while in normal population intraocular pressure X has mean
µ = 16 and standard deviation s = 3. How much it could be P(12  X  20)? ⌅

Exercise 3.3 Can you find the upper and the lower fifth percentile of the intraocular pressure,
as above defined? ⌅

Exercise 3.4 (the ’three sigma’ property) Can you ’explain’ with JASP the above picture:
https://en.wikipedia.org/wiki/File:Standard_deviation_diagram.svg ⌅

Now, we can apply the Distribution menu possibilities to a real dataset: let us connect to
the https://github.com/MassimoBorelli/Miramare repository and exploit the roma dataset.
Actually, this name does not indicate the city, but the acronym of ’Risk of Ovarian Malignancy
Algorithm’, a method introduced more or less fifteen years ago by Richard Moore et al. [36],
in order to estimate benign vs. malignant probability in an ovarian cancer. Doctor Shadi Najaf,
a gynæcologist now at the Kantonsspital Baden, Zürich (Swiss), explored the possibility to en-
hance their algorithm, collecting data on 210 patients with an ovarian mass. She was seeking
to know whether the Histology may be associated, in a statistical sense that will be precised
better, to AgePatients, to their Menopause status, and to four candidate biomarkers (logaritmic
transformed): logHE4, logCA125, logCA19.9 and logCEA.

Let us open roma into JASP and drag-and-drop the AgePatient variable into the Get variable
from data set box, activating the histogram with 8 bins in order to compare it with the right
panel of Figure 3.1.
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Loosely speaking, it might seem that data behaves like a gaussian bell, with a µ ⇡ 49.3 and s = 15.5.
But a more efficient way to check it, is to introduce a very useful graph called the quantile -
quantile plot (i.e. the Q-Q plot). When data are normally distributed, they (approximately) tends
to lay on the ’diagonal’ of the Q-Q plot (i.e. the red line intersecting the first and third quartile
of the gray bullet shaped sample). To read in deep the details, see for instance https://en.
wikipedia.org/wiki/Q%E2%80%93Q_plot, or refer to our previouos Lecture Notes https://
www.researchgate.net/publication/331571258_Medical_Statistics_with_R. The Q-
Q plot will be very useful in assessing the ’quality’ of the linear models in the forthcoming
pages.

Figure 3.2: The quantile - quantile normal plot

The sum of normal variables is, or is not, normal?
Do two dromedaries make a camel? It’s a funny question, but there is in literature a bit of mess
about the ’sum’ of two normal variables. Let us read the authoritative Bernard Rosner [43, page 135]

.. linear combination of normal random variables are often of specific concern. It
can be shown that any linear combination of normal random variables is itself normally
distributed.

And now, let us move to Martin Bland [7, page 111]:

... If we add two variables from Normal distributions together, even with different
means and variances, the sum follows a Normal distribution.

The two statements are misleading; it seems that there is a confusion between things happening
R⇥R= R2 or in R. As a famous counterexample, we recall the Living histograms of Brian Joiner
[28, 31], in which the tallers (mostly, boys) stay on the right of the photo of the next page, while
the smallers (mostly, girls) are on the left: the distribution suggests an immediate bimodality, and
therefore normality is clearly excluded (i.e. two dromedaries do not make a camel). We will discuss
again such important case.
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In particular, in a 1947 number of Nature, S. Vaswani [49] provide a counterexample, recalled and
enlarged by C. Kowalski in his 1973 Non-Normal Bivariate Distributions with Normal Marginals
[33]. And in 1982, E. Melnick and A. Tenenbein, with their Misspecifications of the Normal
Distribution [34], provide a clear response:

Question 3: are linear combinations of normally distributed random variables always
normal? The answer to this question is no and it can be illustrated by using the example
in Question 2 ... linear combinations of normal random variables need not themselves
be normal. The correct statement is that any linear combination of random variables
from a multivariate normal distribution is normally distributed.

www In our previous Lecture Notes https://www.researchgate.net/publication/331571258_
Medical_Statistics_with_R one can find a simple code to generate one-dimensional and
two-dimensional normal data. The picture below depicts a bivariate normally distributed
cloud of 500 random points, respectively of mean 1 and 3, and standard deviation 2 and 4, on
the x and y axes, with correlation of 75% (and we will discuss it better in the sequel).

3.2.2 The Lognormal Distribution

www Eckhard Limpert, et al. Log-normal Distributions across the Sciences: Keys and Clues
https://academic.oup.com/bioscience/article/51/5/341/243981

Let us start recalling a fundamental result, the renowned ’Central Limit theorem’ https:
//en.wikipedia.org/wiki/Central_limit_theorem:
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Theorem 3.2.1 — Lindenberg-Lévy Central Limit Theorem. Suppose (Xi)i2N is a sequence of
independent and identically distributed random variables with E[Xi] = µ and Var[Xi] = s2 <+•.
Then as n approaches infinity, the random variables

p
n(Sn � µ) converge in distribution to a

normal N(0,s2).

Now we can easily guess that multiplying (instead of adding) repeatedly the result of a random
variable, the logarithm of the standardized distribution will be approximately normal (as an example,
imagine to throw many dices and consider the product of the results). This is an insight to explain
why many biological phenomena are modelled by a log-normal distribution: for instance, patients’
body mass indexes [21]. Again, JASP allows to recap all the basic facts checking all the boxes of
the Show distribution menu. We observe that, in general, in the log-normal distribution mean 6=
median 6= mode.

Discussion 3.2.2 — summarizing body mass index. Have a look to the body mass index
histogram of more than 105 patients studied by Gregg Fonarow, https://doi.org/10.1016/
j.ahj.2006.09.007. Suppose that you are required to lead a pilot study concerning radiation
dosimetry in 25 obese patients. How do you think you are going to describe the data? Using the
mean and the standard deviation, or the median and the quartiles? What are here the difficulties?

3.2.3 The Binomial Distribution
Instead of speaking of tossing fair coins or picking balls from the urn, let us refer again to the Shadi
Najaf roma dataset. We see that the Histology collects 39 malignant cancer over 210 patients (i.e.
p ⇡ 39/210 = 0.186).

Exercise 3.5 Suppose that you collect a new sample of 210 women with the same symptoms of
those enrolled in roma. Obviously, only by chance you will observe exactly ’39’ malignancies.
Can you compute the probability to observe a number of malignancy between 30 and 50? ⌅

It is important to note that when the statistician seeks to fit a gaussian distribution on her/his data,
there are two indipendent ’radio knob’ to ’tune’: the mean µ and the standard deviation s . With the
binomial, on the contrary, there is a compulsory constraint which links the mean µ to the variance
s2 ⌘ µ · (1� p), being p the elementary probability of success. This is the reason why often in
papers you will read the sentence ’accounting for overdispersion’.
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Discussion 3.2.3 — smallpox vaccine. In Mould’s 6.3 paragraph we read: A binomial situ-
ation of historical importance is the work of Sir Edward Jenner on smallpox vaccination (an
enquiry into the causes and effects of the variolae vaccinae, 1798). A sample of 23 people was
infected with cowpox (n = 23). The probability of contracting smallpox when inoculated with
the virus was some 90% (p = 0.9), but none of the previously vaccinated 23 people did in fact
contract smallpox (r = 0). The binomial probability of such an event occurring is exceedingly
small, and the observations are therefore definitely not random. While with a programming
language as R is it straightforward to compute such ’exceedingly small’ probability, have you
any idea on how to do it with JASP?

3.2.4 The Poisson Distribution

www Susan Holmes, Wolfgang Huber. Modern Statistics for Modern Biology
https://www.huber.embl.de/msmb/Chap-Generative.html

Born as a distribution ot the number of occurences of a rare event, i.e. with ’small’ probability
p in n independent trials and closely connected to the binomial distribution [42], the Poisson
distribution is nowadays applied not only to rare events but to generic ’count’ problems. Indeed,
Susan Holmes and Wolfgang Huber in their Modern Statistics for Modern Biology fantastic textbook
introduce the discourse in Chapter 1 by means of such random variable.
As an introductory example related to cancer, let us consider the Figure 7.4 of Daniel Zips, Tumour
growth and response to radiation, collected in [32]. Let us read his words about the local tumour
control:

If not a single tumour but a group of tumours (or patients) is considered, the local
tumour control probability (TCP) as a function of radiation dose can be described
statistically by a Poisson distribution of the number of surviving clonogenic tumour
cells (...). As an illustration, one might imagine that a given radiation dose causes a
certain amount of ’lethal hits’ randomly distributed within the cell population. Some
cells will receive one ’lethal hit’ and will subsequently die. Other cells will receive
two or more ’lethal hits’ and will also die. However, some cells will not be hit, will
therefore survive and subsequently cause a local failure. According to Poisson statistics,
a radiation dose sufficient to inflict on average one ’lethal hit’ to each clonogenic cell
in a tumour (number of ’lethal hits’ per cell, m, = 1) will result in 37 per cent surviving
clonogenic cells.

In that example, the Poisson distribution has the intensity (i.e. the mean, also called ’rate parameter’)
l = 0.37.
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Exercise 3.6 Use JASP to discover in a l = 0.37 Poisson distribution how many, in probability,
cells could have a value greater or equal than 2. ⌅

For simulation purpose, JASP possesses some limited capabilities in managing the output when
generating random numbers, being the latter possibility associated to a new column added to the
current dataset. Here, only for didactical purpose, we show how it is possible to generate a sequence
of Poisson distributed counts exploiting the R language ’inside’ JASP:

3.3 Evaluating odds and risks: Bayes theorem

www Viv Bewick, Liz Cheek, Jonathan Ball. Statistics review 11: Assessing risk
https://ccforum.biomedcentral.com/articles/10.1186/cc2908

Aging is recognized to be a risk factor for the ovarian cancer; therefore, not surprisingly, in
roma dataset a contingency table exploring joint frequencies of Menopause and Histology could
provide some clues: menopausal status indeed is a (coarse) statistical proxy of age. But JASP
reveals two possible way to follow, the Classical and the Bayesian one. Let us start with the first
one:
In Table 3.1 we see that 39 women over 210 has been diagnosed with a malignant ovarian tumor; so
one could estimate the relative frequency, i.e. an estimate of the disease (frequentist) probability
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Menopause
Histology ante post Total

benign 106 65 171
malignant 12 27 39
Total 118 92 210

Table 3.1: Menopausal status is a predictor, or a confounder, of malignancy in ovarian cancer?

to be around the 19 percent (of course not within the whole healthy population, but within women
with certain precise symptoms known to the gynæcologists):

P(malignant) =
39
210

= 0.186...

Vocabulary 3.1 — Prevalence. In a cross-section design, the prevalence of the disease into a se-
lected subpopulation described by some precise inclusion criteria is represented by its (frequentist
marginal) probability.

Such marginal probability does not distinguish whether women are in their ante-menopausal or post-
menopausal status. So we look to the inner columns of the table, i.e. we estimate the conditional
probability:

Pr(malignant|ante) =
12
118

= 0.102...

Pr(malignant|post) =
27
92

= 0.293...

Those numbers appears to be different in a pure mathematical sense: a post-menopausal woman
appears to have a triple risk than an ante-menopausal woman. Therefore, we can argue that
Menopause and Histology are not independent events, but they are (in a statistical sense to be
better precised later) associate events.
By the way, we recall here two commonly used association measure; the first is the odds ratio:

O.R.=
106 ·27
65 ·12

= 3.67

and when O.R. is ’far away from’ 1 (i.e. close to 0 or to +•), then rows – and columns – are ’far
away’ from proportionality, and therefore one event (e.g. menopausal status ante / post) provide ’a
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certain quantity of information’ to the other event (e.g. to be ante / post inform us on benign /
malignant response). Another common association measure is the relative risk (i.e. the ratio of
the conditional probabilities):

RR =
27
92
12

118
=

27
92

· 118
12

= 2.89

Exercise 3.7 Explore the output of the Odds Ratio (2⇥2 only) checkbox in the Statistics
menu of the contingency table of Histology (Rows) versus Menopause (Columns). ⌅

3.3.1 Bayes theorem
In a contingency table, marginal probabilities and conditional probabilities are ruled by the famous
Bayes theorem:

P(malignant|ante) =
P(ante|malignant)

P(ante)
·P(malignant)

Vocabulary 3.2 — Prior and posterior probability. In the Bayes theorem, the marginal P(malignant)
probability is called the a priori probability, while the conditional P(malignant|ante) probability
is the a posteriori probability.

Although the proof is straightforward, we do not spend time in this task, but simply we check the
relation with our example:

12
118

?
(12/39)

(118/210)
· 39

210

12
118

?
12
39

· 210
118

· 39
210

12
118

⌘ 12
118

We will discuss in detail why Bayes theorem is so important in statistical inference. Let us
conclude this section recalling some relevant concepts in medical statistics, when we are required
to evaluate the ’performance of a diagnostic test’.

Vocabulary 3.3 — Sensitivity and specificity. In a cross-section design, the sensitivity is the
probability of a positive test in people with the disease, while specificity is the probability of a
negative test in people without the disease.
In our Table 3.1, sensitivity and specificity are the conditional probabilities P(post|malignant) and
P(ante|benign), Sens = 27/39 = 69%, while Spec = 106/171 = 62%. Sensitivity and specificity
are characteristics of a test and are not affected by the prevalence of the disease [6].

Nevertheless, those two quantities are not suitable in assessing the ’quality’, the ’usefulness’ of a
clinical test (i.e to answer to the question ’is it relevant to know about the menopausal status in
order to foresee malignancy?’). Therefore one considers [37]:

Vocabulary 3.4 — Predictive values. In a cross-section design, the positive predictive value
(PPV) is the probability of the person having the disease when the test is positive, while the negative
predictive value (NPV) is the probability of the person not having the disease when the test is
negative.
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In our Table 3.1, PPV = P(malignant|post) = 27/92 = 29% and NPV = P(benign|ante) =
106/118 = 90%. Unfortunately, although the PPV and NPV give a direct assessment of the
usefulness of the test, they are affected by the prevalence of the disease [6]. This is the reason why
often researchers move to the likelihood ratioes [6]. For these and other concepts as likelihood
ratios, pre-test probability, post-test odds, Younden’s index see:

www Viv Bewick, Liz Cheek and Jonathan Ball. Statistics review 13: Receiver operating character-
istic curves
https://ccforum.biomedcentral.com/articles/10.1186/cc3000

3.3.2 The Bayes factor

www Wikipedia. Bayes factor
https://en.wikipedia.org/wiki/Bayes_factor

We need to introduce an important concept, the Bayes factor, and we do it with a simple, artificial,
example, similar to the one presented in Wikipedia. Alice has a balanced urn with 5 winning black
balls and 5 white balls (p = 0.5), Bob has a tricky urn with 6 winning black balls and 4 white balls
(p = 0.6). Suppose that, in a pure binomial scheme, the extractions with replacement, we observe
115 successes over 200 draws, but without knowing if they are generated from Alice’s or Bob’s urn.

If we compute with JASP, as shown in Figure 3.3.2, the conditional probabilities:

P(X = 115| Alice ) =
✓

200
115

◆
·0.5115 ·0.5200�115 ⇡ 0.006

P(X = 115| Bob ) =

✓
200
115

◆
·0.6115 ·0.4200�115 ⇡ 0.044

we observe that it is much more likely that the balls have been drawned by Bob’s urn: it’s probability
is about seven times higher than Alice’s one. The ratio P(X = 115| Alice )/P(X = 115| Bob )
represents what is called the Bayes factor.

More formally, if we have observe some data D and we have two different generative models M1
and M2 and we desire to quantify the ’plausibility’, the ’preferability’ for a model over another, the
Bayes factor is defined to be:

P(D|M1)

P(D|M2)
=

P(M1|D)

P(M2|D)
· P(M2)

P(M1)

In next chapter we will appreciate the importance of evaluating the Bayes factor as a foundations of
the JASP software.
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3.4 Sample and population: approaching inference

www Elise Whitley, Jonathan Ball. Statistics review 2: Samples and populations
https://ccforum.biomedcentral.com/articles/10.1186/cc1473

In medical (and other) research there is generally some population that is ultimately
of interest to the investigator (...). It is seldom possible to obtain information from
every individual in the population, however, and attention is more commonly restricted
to a sample drawn from it. The question of how best to obtain such a sample is a
subject worthy of discussion in its own right and is not covered here. Nevertheless,
it is essential that any sample is as representative as possible of the population from
which it is drawn, and the best means of obtaining such a sample is generally through
random sampling.

The above quotation, from Elise Whitley and Jonathan Ball, clearly introduces the matter: we
collect data from a sample of patients and we are required to analyse them in order to provide
some general conclusions, possibly valid for the whole population whose that sample belongs to.
Richard Mould’s words depicts even better the situation:

In statistical parlance the term population refers to the group of objects, events,
results of procedures or observations (rather than the geographical connotation of
population relating only to persons in a country or state etc) which is so large a
group that usually it cannot be given exact numerical values for statistics such as the
population mean µ or the population standard deviation s . These statistics therefore
can only be estimated.

To obtain for example, an estimate of the population mean µ of a certain character-
istic x of the population, sampling must first take place because all the values of x for
the entire population cannot be measured. Only a small part of the population can be
surveyed and that part is called a sample.

There are various methods of sampling, including random sampling, which for
clinical trials is discussed in a later chapter as simple randomisation, stratified ran-
domisation and balanced randomisation.

The random sampling is a sort of ’life insurance’ agains the sampling bias issue: we have to be
aware that, as shown in the above Figure 3.4 by Stefano Panzeri [38], that our data could be affected
by a not-random sort of ’distorsion’ and, in the typical research framework of medical statistics,
when data are already collected we can neither detect it nor fix it.
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www Stefano Panzeri, Cesare Magri and Ludovico Carraro. Sampling bias.
http://www.scholarpedia.org/article/Sampling_bias

Statistical inference relies on two different perspectives, which have been estabilshed during
the decades on sound mathematical foundations by, among others, Bruno de Finetti (’probability
does not exist’) for the concept of subjective probability and Richard von Mises (’probability theory
is long sequences of experiments or observations repeated very often and under a set of invariable
conditions’) for the frequentist definition of probability.

Figure 3.3: Bruno de Finetti, from Trieste, and Richard von Mises, from Lviv, two borderline cities
at the Austro-Ungarian empire at the end of nineteenth century. Source: Wikipedia.
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3.5 Mismatching variability with reliability
It is now the suitable moment to ’unblur’ the image relative to Discussion 2.2.1: JASP collects
under the descriptive menu the standard error of the mean index.

One might wonder if this is a proper choice. Let us carefully read R. Mould’s words written in his
4.1 paragraph:

The standard deviation sm of the sample mean xm tells you about the spread of
the measured sample values x1,x2, . . . ,xi, . . .. (...) If the sampling experiment to
measure xm is then repeated N times, with the sample size n always remaining the
same, a total of N values of xm will be obtained. If these are then averaged, then M
, which is the mean of means or grand mean is obtained. The standard deviation of
the mean of means M is given a special name: standard error of the mean, where
SE = Sample Standard Deviation /

p
n

To clarify the concept, we try a simulation. Let us import into JASP the cholesterol dataset con-
cerning 1025 Triestiners healthy blood donors, from the https://github.com/MassimoBorelli/
Miramare repository.

The picture above depicts their HDLchol high density lipo-protein cholesterol levels skewed
distribution, whose mean m is approximately 54.7. We are interested in estimating the unknown
HDL cholesterol mean level µ of the whole Triestine healthy population: could be m = 54.7 a
plausible candidate? Well, naively, we can suspect that blood donors represents a biased random
sample of the overall target population (which comprises also not donors: babies, elderlies and
diseased people). Neverthelss, for exercise, we try a simulation.

We activate the R in JASP window: in this enviroment to the active dataset the standard name
data is attributed, so the variable of our interest is coded as data$HDLchol. As a start try, let use
extract 49 random values (why 49? Only because it is something squared, 49 = 72):

sample(data$HDLchol, 49)
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The idea is to compute the mean of this sample, to store it into a memory numeric vector of
dimension, say, 1000 and to repeat such calculation for 1000 times by means of a for cycle:

memory = numeric(1000); for(i in 1:1000){memory[i] = mean(sample(data$HDLchol, 49))}

mean(memory)
sd(memory)
sd(data$HDLchol)/7

We observe one good thing: the mean of memory, i.e. the mean of means in Mould’s world, is
54.6 and it appears to be very similar to the mean m = 54.7 of the HDLchol data. But what about
variability?
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Table 3.2: Descriptive Statistics
HDLchol

Valid 1025
Mean 54.685
Std. Error of Mean 0.387
Std. Deviation 12.392

Originally, the standard deviation of HDLchol was 12.39, while now the standard deviation of
memory is very different, 1.71. Does it exist any relation between those two numbers? Well, the
first ’relation’ is that they have the same name, because they measure the variability of their data.
But the second relation is that 1.71 measures the variability of a well defined statistics estimator, the
sample mean. And, not surprisingly, the Jakob Bernoulli Weak Law of Large Numbers Theorem
states that the standard deviation of the sample mean is exactly s/

p
n and in fact:

sp
n
=

12.39p
49

=
12.4

7
⇡ 1.77

and such result is really close to 1.71, the standard deviation of memory, which is indeed the
standard error of the mean s/

p
n, which is a measure of reliability [7, 13]. of estimating the

unknown parameter µ , the mean of the high density lipo-protein within the target population
(incidentally, observe the elegant bell shape of memory: this is a consequence of the Central limit
theorem 3.2.1).

In conclusion: do not confuse variability with reliability and do not confuse standard deviation
with standard error. Sukhbir Kaur et al. in their repeated measurement experiments concerning
certain gene silencing, curiously perform some experiments three times, and other in a fourfold
replicate. And much more curiously, in the former cases they summarize data variability with the
standard deviation, and in the latter with standard errors... yery mysterious.

The error bars are very frequently exploited in biomedical literature to present experimental
data collected with repeated measures. But many statisticians agree with Tatsuki Koyama, now
at the Vanderbilt School of Medicine, which calls such very dangerous diagrams the dynamite
plots: the do not convey important information and they are usually misleading. His poster is worth
reading:

www Tatsuki Koyama. Beware od Dynamite
https://biostat.app.vumc.org/wiki/pub/Main/TatsukiRcode/Poster3.pdf
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And if you are delighted about such foggy world and want to discover further ’epic fails’
concerning the London Royal Mint and its six centuries mistake, or the 1.7 USD billion badly spent
by Bill and Melinda Gates Foundation in wrong support to schools, refer to Richard Wainer tells in
his The most dangerous equation [51] and its natural sequel by Yu-Kang Tu and Mark Gilthorpe.

www Richard Wainer. The most dangerous equation
https://www.researchgate.net/publication/255612702_The_Most_Dangerous_

Equation

www Yu-Kang Tu and Mark Gilthorpe. The most dangerous hospital or the most dangerous equa-
tion?
https://bmchealthservres.biomedcentral.com/articles/10.1186/1472-6963-7-185

3.6 Exercises

⌅ Activity 3.1 — the normal distribution. Simply referring to the above graph as proposed by
Bernard Rosner, concerning the normally distributed diastolic blood pressure, are you able to
evaluate by means of JASP the probabilities of region A, B and C? ⌅





4. T-Test: the history of biostatistics

4.1 Detecting a signal from noise

www Student. The probable error of a mean.
http://seismo.berkeley.edu/~kirchner/eps_120/Odds_n_ends/Students_original_

paper.pdf

In 1908 it appeared on a newly trendy journal called Biometrika, https://en.wikipedia.
org/wiki/Biometrika, a fundamental paper [47] signed by an anonymous author called Student.
For decades the mysterious halo surrounded the identity of the author, which actually was the
mathematician and chemist William Gosset, head of the experimental department of the Guinness
brewery in Dublin (for other fascinating details, consult: https://en.wikipedia.org/wiki/
William_Sealy_Gosset). The paper clarifies two very important topic:

1. in a random sample from a gaussian distribution N(µ,s), estimating the sample mean m do
not convey any information in estimating the sample standard deviation s, and vice versa.

2. the random variable t = m�µ
s/
p

n possesses an explicit density function, which is not a gaussian,
but can be numerically computed.

Although more than a century has elapsed, the paper is a masterpiece still worth reading. Here, first
of all, we need to precise why the quantity

t =
m�µ
s/
p

n
is of our interest1. To do it, let us exploit the concept of signal to noise ratio, with the words of
Stephen Ziliak and Deirdre McCloskey in their The Cult of Statistical Significance magistral paper
[55]:

1The quantity t is usually called test statistic, and this is a sort of pun, and source of confusion, in various language
of the World: while in English and in Spanish the words ’Statistics’ and ’Estadistica’ means the science, and ’the test
statistic’ and ’el estadistico de test’ means the t – and the word ’statistic’ is a sinonymous of ’summary’ –, in French and
in Italian ’Statistique’ and ’Statistica’ do not differ from ’la statistique test’ and ’la statistica test’. Very confusing!
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The signal to noise ratio is calculated by dividing a measure of what the investigator
is curious about – the sound of a Miles Davis number, the losing of body fat, the yield
of a barley variety, the impact of the interest rate on capital investment – by a measure
of the uncertainty of the signal, such as the variability caused by static interference on
the radio or the random variation from a smallish sample.

In the final pages, William Gosset illustrates its method providing concrete examples; in particular
one question is to decide whether an ante-litteram ’agricultural biotechnology’ treatment is useful,
or not, in increasing the production of beer, i.e. to dry seeds into a special oven before seeding
them. Here Gosset’s words:

To test whether it is advantage to kiln-dry barley seed before sowing, seven varieties
of barley were sown (both kiln-dried and not kiln-dried) in 1899 and four in 1900; the
results are given in the table (4.1), expressed in Lbs. head corn per acre.

Not Kiln-Dried Kiln-Dried Difference

1903 2009 +106
1935 1915 -20
1910 2011 +101
2496 2463 -33
2108 2180 +72
1961 1925 -36
2060 2122 +62
1444 1482 +38
1612 1542 -70
1316 1443 +127
1511 1535 +24

Table 4.1: The original data of Student published in Biometrika [47, page 24].

4.1.1 Classical One-sample t test

www Elise Whitley, Jonathan Ball. Statistics review 5: Comparison of means
https://ccforum.biomedcentral.com/articles/10.1186/cc1548

Table 4.2: Descriptive Statistics
difference

Valid 11
Missing 0
Mean 33.727
Std. Error of Mean 19.951
Std. Deviation 66.171

Let us import in JASP the gossett dataset, stored as usual in the https://github.com/
MassimoBorelli/Miramare repository: the difference between nkd not treated (not kiln-dried)
and kd treated (kiln-dried) seeds collects eleven data. The goal is to compare the experimental
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result m = 33.7 with the theoretical hypothesis that to treat or not to treat provide the same effect:
this is the so-called null hypothesis, i.e. µ = 0.

One therefore is interested in evaluating the ’distance’ of these two quantities, xm �µ , from a
statistical point of view; that is, to decide if |xm �µ| could be considered a null distance, or not. In
other words, if the signal |xm �µ| differs from the noise s/

p
n. We could proceed by hand, with

chalk and blackboard:

Now, t = 1.69 represent a quantile, but of what random variabile? The one studied by William
Gosset, nowadays simply called t. If we search within the Distributions menu, we may compute
the probability to observe a signal to noise ratio smaller than 1.69 with respect to the t distribution
with 10 degrees of freedom (why 10 degrees of freedom? Because 11 are the numbers, but 1
information has already been ’consumed’ in order to compute the sample mean m = 33.727):

As a trivial consequence, the white area outside is approximately equal to 0.12: this is exactly
what we can immediately read when performing the Classical One Sample T-Test in the JASP
menu:

Table 4.3: One Sample T-Test
t df p

difference 1.690 10 0.122

So, what we can conclude? What decision do we make? A bit of suspence ...
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4.1.2 Classical Two-sample paired t test
There exists another proper methodology to achieve the previous result: to perform the Classical
Paired Samples T-Test, a typical statistical procedure exploited in the longitudinal experimental
design, where (a couple of) repeated measures are collected on the same subject. Dragging and
dropping kd and nkd into the Variable Pairs slot, we obtain the same previous result:

Table 4.4: Paired Samples T-Test
Measure 1 Measure 2 t df p

kd - nkd 1.690 10 0.122

And, again, what decision can we conclude? Here we go.

4.2 Ronald Fisher’s idea on significance level
A Lady declares that by tasting a cup of tea made with milk she can discriminate

whether the milk or the tea infusion was first added to the cup. We will consider the
problem of designing an experiment by means of which this assertion can be tested.
(...) Our experiment consists in mixing eight cups of tea, four in a way and four in the
other, and presenting them to the subject for judgement in a random order. (...) It is
open to the experimenter to be more or less exacting in respect of the smallness of the
probability he would require before he would be willing to admit that his observation
have demonstrated a positive result. (...) Thus, if he wishes to ignore results having
probabilities as high as 1 in 20 ...

In 1937 sir Ronald Aylmer Fisher started his fundamental book The design of experiments [20]
presenting such a curious experiment. In this passage there are at least three relevant points. Let us
discuss them briefly.

1. The conventional significance level of 5%.

www Elise Whitley, Jonathan Ball. Statistics review 3: Hypothesis testing and P values
https://ccforum.biomedcentral.com/articles/10.1186/cc1493

Fisher considered reasonable that 1/20, i.e. 5%, might be a critical level of probability, usually
called the a significance level, convincing you that what has happened is not ’chance’. Therefore,
turning back to the Gosset data, we computed a probability of 12.2% that the observed effect on
dried barley m = 33.727 is simply due to chance. This p = 0.122 probability is named the p-value
of the test with respect to the so-called null hypothesis H0. In detail, in the One-Sample T-Test the
null hypothesis is H0 = {µ = 0}, while in the Two-sample paired T-Test H0 = {µnkd = µkd}. So,
practically, the decision is:

• p-value < a ⌘ 0.05? Reject null hypotheses, there is an effect (kiln dried barley is different
from not-kiln dried barley)

• p-value > a ⌘ 0.05? Do not reject hypotheses, we are not sure there is an effect (maybe no
effect at all?)

2. The freedom to choose the significance level.

www Douglas Curran-Everett and Dale Benos. Guidelines for reporting statistics in journals pub-
lished by the American Physiological Society
https://journals.physiology.org/doi/full/10.1152/japplphysiol.00513.2004
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Fisher’s sentence ’It is open to the experimenter to be more or less exacting in respect of the
smallness of the probability he would require’ clearly leaves open to the researchers the choice
about how much it has to be the a significance level. During the decades putting a = 0.05 has
become a sort of mystic cult (Ziliak and McCloskey,[55]) and important debates have been rised
(Ioannidis [29]), leading the American Statistical Association to release an official opinion with
their The ASA’s statement on p-values [52] (to quickly access to such free papers see https:
//padlet.com/massimo_borelli/sxa0vfqojwxl).

As a rule, we can follow Douglas Curran-Everett [14], when defining and justifying a critical
significance level appropriate to the goals of the study:

For any statistical test, if the achieved significance level P is less than the critical
significance level a , defined before any data are collected, then the experimental effect
is likely to be real (...). By tradition, most researchers define a to be 0.05: that is,
5% of the time they are willing to declare an effect exists when it does not. These
examples illustrate that a = 0.05 is sometimes inappropriate.

If you plan a study in the hopes of finding an effect that could lead to a promising
scientific discovery, then a = 0.10 is appropriate. Why? When you define a to be
0.10, you increase the probability that you find the effect if it exists.

In contrast, if you want to be especially confident of a possible scientific discovery,
then a = 0.01 is appropriate: only 1% of the time are you willing to declare an effect
exists when it does not.

So, again turning back to the Gosset data, it would be wise to state that being a pilot study we a
priori decided to set an a = 0.10 significance level – and being p = 0.122 – that the experiment
does not reach the statistical significance, i.e. we can not exclude that the difference in drying
barley or not is due to chance.

3. significance level and sample size impact on the test power

www Elise Whitley, Jonathan Ball. Statistics review 4: Sample size calculations
https://ccforum.biomedcentral.com/articles/10.1186/cc1521

If one makes a little of combinatorics https://en.wikipedia.org/wiki/Lady_tasting_
tea one discover that the probability that the Lady correctly guesses the tasting cups is 1/70 ⇡
0.014 < 1/20 = 0.05: therefore implicitly recognise that obtaining a p < a is equivalent to a ’zero
error’ situation. But changing the number of cups, i.e. changing all the

�n
k

�
necessarily would move

that ’zero error’ situation, possibly admitting, one, two and even more errors as negligeable. In fact,
the p value depends on N, and in a slight complicate manner.

Let us quote Mould’s paragraph 8.4 [37] words:

There are two types of error which can be made in arriving at a decision about the null
hypothesis, H0. A type-I error is to reject H0 when in fact it is true and a type-II error
is to accept H0 when in fact it is false. By convention the probability of a type-I error
is usually denoted by a and the probability of a type-II error by b . (...) The probability
1�b is defined as the power of the test of the hypothesis H0 against an alternative
hypothesis.

By analogy, a judge starts from the hypothesis H0 = ’this defendant is innocent’; the type-I error
is to reject innocence when in fact it is true and to imprison an innocent. And a type-II error is
to accept innocence when in fact it is false, i.e. to release a culprit. Usually, in practice, many
researchers as a default put a = 0.05 and b = 0.20, i.e the power 1�b = 0.80.
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The R language possesses a particular function which is able to compute any one of the quantity
desired; here, in the Gosset example of the dried barley, the sample size is so ’limited’ (with respect
to the variability exhibited) that the power is about 33%, far away from common accepted limit of
80%: so Gosset had a very high probability to decide that the drying was unuseful when in effect
the truth was just the opposite. Here the proper syntax:

> power.t.test(n = 11, delta = (mean(Difference) - 0),
sd = sd(Difference), sig.level = 0.05,
power = NULL, type = "one.sample")

Therefore, we have a clue: the experiment has been performed in a ’paucity of data’ condition, i.e.
with a too small sample size.

www The power calculation here shown has only a didactical interest, but is is uneuseful – see John
Hoenig and Dennis Heisey, The Abuse of Power: The Pervasive Fallacy of Power Calculations
for Data Analysis [24].

4.3 Out of the frying pan into the fire: statistical or clinical significance?
We try to clarify the point with an example. Suppose that we want to assess the role of the
carbohydrate antigen 19-9, logCA19.9, as a predictor of the ovarian cancer in the roma dataset. In
the next Chapter we will discuss the details, but suppose to know that the proper test shoews no
doubt about its statistical significance, exhibiting a smashing p-value = 0.004.

Nevertheless, a simple boxplot enlightens the fact that although CA19-9 may be ’significant’ it is
not ’useful’, i.e. clinically significant in detecting ovarian pathology. Suppose for instance that a
woman with symptoms has logCA19.9 = 3.0. Of course, such a value is closer to the malignant
group mean 3.2 than to the benign group mean 2.4, but basing on the 3.0 information to guess
histology is nothing more than looking into a crystal ball:
Let us in conclusion read what Richard Mould claims in his 8.3.2 paragraph [37]:

One of the problems encountered by those involved with statistics is how, and with
what accuracy, inferences can be drawn about the nature of a population when the
only evidence which exists is that from samples of the population. In order to solve
this problem an understanding of statistical significance is essential and it should be
immediately recognised that this is not necessarily the same as clinical significance
when the statistics refer to medicine. (...) It is an absolute priority for those using tests
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for statistical significance that they understand the conditions which must apply for a
particular test to be valid and that they have a clear understanding of the hypotheses
which are being tested.

4.4 Absence of evidence, or evidence of absence?

www Douglas Altman, Martin Bland. Absence of evidence is not evidence of absence
https://www.bmj.com/content/311/7003/485

The two famous statisticians Doug Altman and Martin Bland in their paper [2] clearly depict our
situation: the classical one-sample T-test applied to the Gosset kiln-drying seeds experiment is
not able to reveal us the evidence of absence, i.e that the data support the hypothesis that there is
no effect (i.e., the two conditions kiln dried and not-kiln dried do not differ); or the absence of
evidence, i.e. that the data are inconclusive (i.e. we have few data to distinguish the truth). Such a
trouble generally affects the ’p-value methodology’ in null-hypothesis significance testing. Let us
discover why Bayesian approach may help to overcome such impasse.

4.4.1 Bayesian One-sample t test

www Mark Goss-Sampson. Bayesian Inference in JASP: A Guide for Students
http://static.jasp-stats.org/Manuals/Bayesian_Guide_v0_12_2_1.pdf

Let us now explore the Bayesian One Sample T-Test in the JASP menu. Leaving untouched
the defaults, on obtain the following table:

Table 4.5: Bayesian One Sample T-Test
BF10 error %

difference 0.885 0.004

Note. For all tests, the alternative hypothesis spec-
ifies that the population mean differs from 0.

We see that the Bayes Factor is close to 0.89. What can we deduce? We may refer to the table in
Figure ??. The left column lists in order the Bayes Factors according to the proposal of the British
astronomer and mathematician Harold Jeffreys (the J in JASP!). In his seminal 1946 paper[30]
Jeffreys introduces the concept of the non-informative prior distribution: in fact, as recalled
in Section 3.3.2, Gosset were observing eleven data D (the Differences) having two different
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generative models: M0, the normal distribution with µ = 0, and M1 a normal distribution with
µ 6= 0:

BF10 =
P(D|M1)

P(D|M0)
= 0.885

Here above we see the Mark Goss-Sampson[23] JASP table in evaluating Bayes Factor. As
BF10 = 0.885 is very close to 1 we should claim that Gosset experiment provided absence of
evidence in favour of the null hypotesis µ = 0 (i.e. no difference between kiln dried and not-kiln
dried seeds) or the alternative hypothesis µ 6= 0 (i.e. there is a certain difference when kiln drying
the seeds). Actually, as BF10 < 1, one can say that it could be an anecdotal evidence toward the
null hypothesis (i.e. a faint clue toward ’evidence of absence’). The double red / gray / white arrows
in the table recalls a useful graphic tool called the pizza plot, which use the red tomato and the
white mozzarella cheese to enhance the evidence for H1 versus H0.

In particular, selecting the Additional Info in Plots Prior and posterior menu, we im-
mediately see that the pizza plot is nearly half tomato and half mozzarella. The two random
distributions are the default prior (which is a Cauchy distribution, https://en.wikipedia.org/
wiki/Cauchy_distribution).
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In conclusion, how could William Gosset had reported such a finding? Saying that a 2-sided
Bayesian one-sample t-test comparing the sample population difference (m = 33.7) to the null
mean (µ = 0) returns a BF01 of 0.885 suggesting anecdotal evidence in favour of the alternative
hypothesis. Equivalently, this means that the data is 1.13 times more likely to have occurred under
the null than under the alternative hypothesis.

4.4.2 Bayesian Paired Samples T-Test
No surprise: we obtain the same conclusion when performing the Bayesian Paired Samples
T-Test, dragging and dropping kd and nkd into the Variable Pairs slot:

Table 4.6: Bayesian Paired Samples T-Test
Measure 1 Measure 2 BF10 error %

kd - nkd 0.885 0.004





5. Differences between groups

5.1 Two groups
We provide here a brief survey of some classical tests concerning two indipendent samples, adapting
the Michael Crawley comprehensive The R Book [13, pages 289-298]. We are interested in two
main questions:

1. comparing two (unpaired) sample means with normal errors
2. comparing two means with non-normal errors

In the first case, the main tool is again the Student T-Test introduced in the previous Chapter. The
frequentist approach demands to distinguish two further items:

• comparing two (unpaired) sample means with normal errors and similar dispersion (the
proper Student’s t test)

• comparing two (unpaired) sample means with normal errors but different dispersion (the so
called Welch test)

and, to achieve such decision - in the frequentist framework - one has to be able to
• assess normality in data (Shapiro - Wilk test)
• compare data dispersion (i.e. the variances, with the Levene test)

In the second case, when non-normal errors appears, the straightforward application of the
Wilcoxon - Mann - Whitney test is recommended. Let us see some example.

5.1.1 The Student T-Test

www Elise Whitley, Jonathan Ball. Statistics review 5: Comparison of means
https://ccforum.biomedcentral.com/articles/10.1186/cc1548

We refer again to the ovarian cancer roma dataset. We observed in Section3.2.1 that data
appears to be normally distributed. We know that aging is a risk factor for the tumor, so the question
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is: do AgePatient differs, in a statistical sense, between the benign and malignant groups, i.e.
with respect to Histology? The descriptive analysis shows that the mean age of the 171 women
with benign pathology is more or less eleven years younger than the 39 with malignant cancer. But
there is a certain dispersion, of more than a dozen of years, measured by the standard deviation:
can we say that the mean ages are different in a statistical sense?
We resort to the Bayesian Independent Samples T-Test:

Table 5.1: Bayesian Independent Samples T-Test
BF10 error %

AgePatient 652.530 5.868e�9

and, being BF10 greater than 100 we have a decisive evidence in favour of the alternative hypothesis,
i.e. that ages are different between the two women groups.

Now, looking to the Classical Independent Samples T-Test, we observe that the test statistic
t is much more than 4 deviates away from zero, i.e. the p-value is practically zero: we say that a
very high significant difference has occurred.

T-Test t df p

AgePatient �4.282 208 < .001

But we have to verify also two Assumption Checks: normality of errors and homogeneity in
error dispersion. Have a look to the Raincloud Plots:

To assess if the orange and the green dots are possible outcomes of the gaussian distribution we
could try to evaluate the shapes of the orange and green densities, recognizing a bell shape (or
examining the symmetry of the boxplots). But this road is skittish, it sholud be better to depict
two QQ-plot in order to visually assess normality. The latter hypothesis, i.e. homogeneity in error
dispersion, could be evaluated looking to the boxes in the boxplot: if they have approximately the
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same length, good news, we are in presence of homoskedasticity , i.e. equal dispersion of errors
in terms of variance.

Besides visual inspection, one has also formal test to pursuit: the normality check is usually
provided by applying the technique of Samuel Shapiro and Martin Wilk and their Shapiro-Wilk
test: in this example, being p = 0.114 and p = 0.257 we do not claim evident departure from
normality (according to the typical a = 0.05 significance level). The second check involves the
Levene test, whose significant response leads to an heteroskedasticity condition, i.e. different
variance of errors. In the present example, a p = 0.307 convinces ourselves that no violation occurs.

Normality (Shapiro-Wilk) W p

AgePatient benign 0.987 0.114
malignant 0.965 0.257

Variances (Levene) F df p

AgePatient 1.049 1 0.307

5.1.2 The Welch test
Richard Mould [37] recalls in his Table 11.1 that in order to properly apply the t-test, several
hypotheses have to be fulfilled:

1. The observations must be independent in order to avoid bias
2. The observations must be drawn from normal populations
3. These normal populations must have the same variance (or in special circumstances, a known

ratio of variances)
4. The variables involved must have been measured in an interval scale, so that it is possible to

use arithmetical operations (e.g. add, divide, obtain means) on the values of the variables

Despite the fact that in 1969 Bradley Efron [16] has proved that some mild ’orthant symmetry
condition’ instead of normality and homoskedasticity can be sufficient, have a look to the following
situation, concerning the systolic pressure measured on some male and some female students (we
will introduce better the dataset in the next Chapter):

As you see, the Shapiro-Wilk test do not suggest violations to normality (p = 0.125 > 5%; p =
0.303 > 5%), but we might have a problem of heteroskedasticity: the Levene’s test could have a
significant p = 0.025 < 5%.
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Therefore we can suspect to be in presence of two normal distribution with different dispersions;
and if we seek to test two (unpaired) sample means with errors modelled by heteroskedastic normal
distributions, the mathematical hypotheses of the originary Student T-Test are not fulfilled. Such
mathematical questions have been explicited in the famous ’Walter Behrens and Ronald Fisher
problem’.

www Wikipedia. Behrens - Fisher problem
https://en.wikipedia.org/wiki/Behrens%E2%80%93Fisher_problem

To overcome the difficulty, JASP implements the Bernard Lewis Welch test. It is a a two-sample
location test used to test the hypothesis that two unpaired populations have equal means, but in a
situation in which the two samples have unequal variances and/or unequal sample sizes.

t df p

systolic �4.110 55.153 < .001

Note. Welch’s t-test.

The p < .001 response is a convincent proof to decide for difference in mean systolic pressure
between girls and boys. If you notice, the degree of freedom d f = 55.153 is not an integer number
– this is a consequence of the so called Welch - Satterthwaite relation:

www Wikipedia. Welch - Satterthwaite equation
https://en.wikipedia.org/wiki/Welch%E2%80%93Satterthwaite_equation

5.1.3 The Mann - Whitney test
Suppose now to be interested to confirm the biomarker logHE4 ability in predicting Histology
outcome. The orange boxplot exhibits a skewed distribution, with a long whisker, and we are surely
doubtful about normality: the Shapiro - Wilk test in both group is very highly significant.

In this case, i.e. testing two (unpaired) sample means with non-normal errors, it is proper to resort
to the non-parametric Wilcoxon - Mann - Whitney U test, which considers data ordered along
their ranks [12]. No doubt, here: a so small p-value < .001 confirms our expectation. We can also
approach this issue by means of the Bayesian Independent Samples T-Test, obtaining a BF10
greater than one thousand, a decisive evidence in favour of the alternative hypothesis (i.e. logHE4
differs in benign and malignant ovarian lesions.
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Table 5.2: Bayesian Mann-Whitney U Test
BF10 W Rhat

logHE4 4073.742 808.000 1.087

Note. Result based on data augmentation algo-
rithm with 5 chains of 1000 iterations.

The output comes from a computational algorithm [15] known as data augmentation, which relies
on the Markov chain Monte Carlo (MCMC) sampling method.

www Johnny van Doorn et al. Bayesian rank-based hypothesis testing for the rank sum test, the
signed rank test, and Spearman’s r
https://www.tandfonline.com/doi/pdf/10.1080/02664763.2019.1709053

5.2 Three or more groups
We introduce now a new dataset, named fresher. It is a cross-section dataset, relative to a cohort
of medicine and surgery first year Trieste university students: they were 65, and we collected their
gender (a factor variable with f and m levels), their height, weight and shoesize (numeric
variables), along with their smoke habits (a factor with levels no and yes), and their gym physical
activity (classified as a three level alphabetically ordered factor not < occasional < sporty).

Exercise 5.1 Do weight differ, in a statistical sense, with respect to gender? And, is smoke a
predictor of weight? ⌅

From a bayesian perspective, while the former question has a crystal clear answer with a ludicrously
high BF10, the latter has an anecdotal or moderate evidence toward the null: we are not so sure,
but smoking might not be a reliable predictor of weight at all. If you prefer the classical approach,
you will find that both the Student and the Mann - Whitney test are in the first question very highly
significant, and in the second question close to one half.

Now we recall that the Welch test is able to detect differences in means between two groups, as its
test statistic is defined as:

t =
m1 �m2q

s2
1

n1
+

s2
2

n2

Suppose that we have to test, for instance, three groups: how could you modify that statistic? Well,

it would be easy to modify the denominator adding a term,
q

s2
1

n1
+

s2
2

n2
+

s2
3

n3
. But the numerator
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would remain undefined: m1 �m2 �m3? m1 +m2 �m3? m1 �m2 +m3? This simple algebraic
observation is the main reason why the T-Test can not be extended to three or more groups.
It is possible to overcome this difficulty observing that when differences in mean are present, also
the data dispersions, i.e. the variances, decrease. Have a look:

Exercise 5.2 Compute weight’s variance. Then split weight with respect to gender and to
smoke, and compute again the variance. What do we observe? ⌅

We know that gender is a predictor of weight, and the above Exercise shows that the weight
variances of girls and boys are, respectively, 41.1 and 50.7: a great reduction with respect to the
92.1 variance of the whole weight data. On the contrary, splitting the weight into the two groups
of smokers (s2 = 106.4) and not smokers (s2 = 89.4) do not reduce the 92.2 variance (actually, in
one group there is an increase).

In conclusion, we have discovered the recovery plan: if we want to test differences between means,
we have to test reduction in variances! And this is the reason why Anova (= An.o.va., Analysis of
Variance) has this strange name.

5.2.1 The one-way Anova

www Viv Bewick et al. Statistics review 9: One-way analysis of variance
https://ccforum.biomedcentral.com/articles/10.1186/cc2836

The one-way Anova analysis in JASP can be performed into bayesian or into classical frequen-
tis approach. As an example, we consider as a Fixed Factor the gym physical activity (ordered
according the three levels not < occasional < sporty and as Dependent Variable the
weight:

The Bayesian ANOVA can be interpreted reading the BFM = 14.02, which provides a strong
evidence in favour of the alternative hypothesis: some of the groups is different in mean from some
of the other. A BFM = 14.02 implies that the data have increased the prior model odds of more than
ten times. We can also examine the Classical ANOVA, yielding a highly significant p = 0.003:

Table 5.3: ANOVA - weight
Cases Sum of Squares df Mean Square F p

gym 1020.400 2 510.200 6.488 0.003
Residuals 4875.816 62 78.642
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But, simply looking to the purple sporty distribution, we get the impression not to be in presence
of a gaussian distribution, which is mathematically required as correctly stated by Vijay Rohatgi
[42]:

Let X11,X12, ...,X1n1 ,X21,X22, ...,X2n2 and X31,X32, ...,X3n3 be independent random sam-
ples from three normal populations with respective parameters µ1 and s2

1 , µ2 and s2
2 and µ3

and s2
3 . Suppose s1 = s2 = s3. ...

Exercise 5.3 Go to the Descriptive menu and make a Q-Q plot of weight splitted on gym.
What do you think about normality? ⌅

Therefore if one wants to perform an Anova according the traditional way, it is required to check
whether in weight:

1. all three groups not, occasional, sporty are normally distributed
2. their dispersions are homoskedastic, i.e. in statistical sense s1 = s2 = s3.

So, in this particular case, it is proper to move away from parametric approach resorting nonpara-
metric methods, i.e. the William Kruskal and Wilson Wallis Kruskal - Wallis test:

www Wikipedia. Kruskal - Wallis one - way analysis of variance
https://en.wikipedia.org/wiki/Kruskal%E2%80%93Wallis_one-way_analysis_

of_variance

5.2.2 The multiple comparison issue
We saw that in weight versus gym, the Anova p-value is significant. But such a p-value do not
disclose which group is different from the other, and many possibilities are plausible, and we are
required to choose one of them:

• not = occasional 6= sporty
• not 6= occasional = sporty
• not = sporty 6= occasional
• not 6= occasional 6= sporty 6= not
Richard Mould’s words in his chapter 17.1 [37] are clear:

With more than two means it is of course technically possible to make multiple
t-tests on all possible pairs of means, but making multiple tests increases the probability
of making a type I error.

In fact, suppose to choose an a level of 5%; then, the probability to commit an error of the first
type is about the 14% (independent events, product of probabilities):

1� (1� 5
100

) · (1� 5
100

) · (1� 5
100

) = 1� (1� 5
100

)3 = 0.143

One ’radical’ solution is to exploit the Bernoulli inequality 1+nh < (1+h)n, i.e. if we have n = 3
groups and therefore n · (n�1)/2 = 3 comparisons, then one fix h = a/3, i.e. a = 0.05/3 = 0.017
instead of the common choice a = 0.05. This is the famous Carlo Bonferroni correction[41] .
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www Wikipedia. Bonferroni correction
https://en.wikipedia.org/wiki/Bonferroni_correction

One milder and elegant approach is to trust in John Tukey and adopt his Honest Significant
Differences multiple comparison test[13]:

Mean Difference SE t ptukey pbon f

not occasional 9.665 2.711 3.565 0.002 0.002
sporty 6.373 2.740 2.326 0.060 0.070

occasional sporty �3.292 2.645 �1.245 0.432 0.653

From the table, we are convinced that occasional and sporty has not different means, in a
statistical sense. Therefore we are led to decide that:

• not 6= occasional = sporty

Nevertheless, observe this strange fact: a p-value = 0.060 (Tukey) or 0.070 (Bonferroni) could
wrongly suggest that not = sporty. As you see, everything could appear to be shaky and slippery,
if you forget that ’absence of evidence is not evidence of absence’.

5.2.3 How to mend heteroskedasticity
When you try to perform an ANOVA with JASP (and with most of all others statistical softwares) in
a heteroskedastic situation, the things can be really bad. Consider as an example the tooth dataset,
in which sixtynine patients have been observed, measuring their gengival areainflammation and
considering their gender and their different attitude toward smoke (yes or no). The main goal was
to discover a statistical relation with a particular cytokine mediating inflammatory response named
Interleukin-1 beta (IL-1b ), il1b, expressed in three levels: mutated, heterozygotes or wild-type.
We see from the boxplots that red etero patients has, on average, a lower inflammation area than
the green mut patients; the observation is confirmed by the descriptive statistics. But performing
an ANOVA, the software detects only a faint anecdotal evidence BF10 = 2.0 of effect, and not
significant p values. This contradiction between descriptive and inferential result is wt’s fault: the
blue boxplot has a dispersion that is approximately the double of the other two groups.

Unfortunately, JASP has not any valid tool to manage the impasse. If we move to R language we
have two effective strategy: the first, to continue within the ANOVA framework and resort to the
sandwich [54] and multcomp [25] packages, as magistrally explained in the Multiple comparisons
using R book written by Bretz, Hothorn and Westfall [9]. In that case, one can discover that hetero
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versus mut has p-value = 0.024. The second approach is even simpler and involves the well-known
concept of information entropy applied to the so called linear model: we discuss it in the next
Chapter.





6. Regression

6.1 Overview

www Viv Bewick et al. Statistics review 7: Correlation and regression
https://ccforum.biomedcentral.com/articles/10.1186/cc2401

In the previous Chapter we were interested in assessing differences in the numeric (or scale in
JASP language) weight variable with respect to the nominal gender factor within our fresher
students dataset, resorting the JASP T-Test menu; and, when referring to the three level gym factor,
we addressed the ANOVA menu. In this Chapter we introduce a modern and powerful statistical
tool widely used in the cross-sectional studies: the linear model.

www Francis Galton. Regression towards Mediocrity in Hereditary Stature
https://galton.org/essays/1880-1889/galton-1886-jaigi-regression-stature.

pdf

Typically, in the statistical textbooks, this argument is introduced talking about the sir Francis
Galton regression ’towards mediocrity’ line ’in hereditary stature’ [22], and at a first sight the two
arguments perfectly overlap. We are going here to show that the linear model encompasses a variety
of important and classical statistical tools, usually named Ancova methods – and we are going to
show that the t-test or the Anova we have just learnt are trivial consequences of this method.

6.2 The regression line
Suppose we are interested in assessing the possible relation that interlaces fresher’s weights with
their heights. It is a relation between two numeric variables, and we stress the role that height
assumes as a possible predictor of (i.e. a dataset covariate significantly associated to) the weight.
In this sense, using the symbolicWilkinson and Rogers notation we pose the following relation:
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weight ⇠ height

This position implies that height represents the input, the independent variable located on the
abscissa x, while weight is thought to be the output, the dependent variable located on the ordinate
y.

A famous way to ’quantify the linear relationship’ between two variables is the so called Karl
Pearson’s correlation 1  r ⌘ 0.744  1. There are many straightforward or clever way to explain
its definition, but we will provide a simple explanation: suppose that the blue line in the figure has
equation y = a+b · x, with b the slope. The dimensional analysis lead us to deduce that:

[b] =
[D weight]
[D height]

=
[Kg]
[m]

but reasonable proxy of D weight and D height are, respectively, the standard deviations sweight and
sheight . So, no surprise, the quantity:

[b] ·
[sheight ]

[sweight ]

is dimensionless. And, ta-dah:

r = b · sx

sy
; b = r ·

sy

sx

Before proceeding, we always remember that a statistical relation is not a cause-effect relation at
all. Just for fun, look to the http://www.tylervigen.com/spurious-correlations in which
for instance the divorce rate in Maine is put in relation with consumption of margarine.

www Tyler Vigen. Spurious Correlations
https://galton.org/essays/1880-1889/galton-1886-jaigi-regression-stature.

pdf

More seriously, remember that:

The objective (.. ) is to show that a relationship exists between these two variables,
so that having demonstrated the existence of this relationship, it can be used within
some theoretical framework. Blind use of regression formulae, just because they exist,
can be very misleading. If Y = a cause and X = an effect, one must be careful not to
draw too many conclusions if there may be several other possible causes. Cause and
effect in medicine are seldom so simple as to be explained by a single straight line. (R.
Mould [37], section 16.1)
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When looking for a regression line y = a+b ·x we need to precise how to choose the intercept a and
the slope b, in a way that the line crosses the point cloud in the ’best possible way’. This can always
be achieved as demonstrated in the Gauss - Markov theorem (e.g. [18, page 18]): the regression
line is the Best Linear Unbiased Estimate (’BLUE’) according to the Ordinary Least Square (OLS)
estimation, a method explored since 1755 by the dalmatian Ruggero Boscovich / Rud̄er Bošković
[46]. Simply, one consider all the residuals (one of them is the violet segment in the above figure)
and, likewise in the Pythagorean theorem, one consider the sum of the squared residuals (i.e the
sum of the squared ’vertical’ distances from each cloud point (xi,yi) and its vertical projection of
the line, i.e. the point (xi,a+b ·xi)). In other words, the residuals are defined as ei = yi� (a+b ·xi)
and defining the vector e = (e1,e2, . . . ,ei, . . . ,en) one computes the scalar product eT · e ⌘< e|e >
and search the parameters a and b which minimize such scalar product.
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Let us start the analysis with the Bayesian Linear Regression:

We observe that the regression line, or better, the linear model we are considering possesses
a decisive evidence against the null hypothesis, to be precised in a while. We also read the
determination coefficient R2 = 0.554 value, remebering that this is the squared value of Pearson’s
r = 0.744.

If we move to the Classical Linear Regression menu, we focus the attention on the Coefficients
table:

Model Unstandardized Standard Error Standardized t p

H0 (Intercept) 63.523 1.191 53.357 < .001
H1 (Intercept) �83.891 16.677 �5.030 < .001

height 0.854 0.096 0.744 8.850 < .001

The table allow us to discover the coefficients of the regression line y = a+b · x, i.e. a =�83.891
and b = 0.854; and allow us to precise the meaning of the null model H0, which is that particular
’flat’ horizontal line having b = 0 slope and a = mean(weight) = 63.523 intercept. We are very
highly confindent that all these three numbers are different from zero: in fact p < .001 for each of
them. The pivotal role, anyway, is played by the p < .001 of the height term, which is considered
’the p of the model’.
After having discovered a and b, which represent the fixed effects of the linear model, we have to
describe also the stochastic component of the linear model, or random effect. The theory requires
in fact that residuals ei have to be independent and normally distributed, with zero mean, and with
a constant standard deviation s (remember section 5.1.3). To estimate that s = 6.46, we can type:

> summary(model)$sigma


