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1. Data Presentation

1.1 Introduction

This book collects the lectures of a short course in Medical Statistics held during the 2019 and 2020
editions of the Master in Medical Physics by the Abdus Salam International Center of Theoretical
Physics in Miramare, Trieste, Italy. Our lecture notes are a ’computer-based companion’ to the
course textbook [34] by Richard Francis Mould, Introductory Medical Statistics, available at the
Marie Curie ICTP library with the 51-76 MOU identification code. To type this book we exploited,
with thankfulness, the Mathias Legrand template available at https://www.latextemplates.
com/cat/books.

1.1.1 The R Language
R is an open source software environment for statistical computing and graphics, which can be
freely downloaded from a variety of CRAN (the Comprehensive R Archive Network) world-wide
mirrors: https://cran.r-project.org/mirrors.html. R runs on UNIX/Linux, Windows and
MacOS platforms. You can also exploit the cloud computing facilities, and compile online your
script into https://rdrr.io/snippets/.

Nick Thieme has recently published an article[44] which recalls the astonishing success history
of R, born twenty years ago in Auckland University by the ideas of two statistics professors: Ross
Ihaka and Robert Gentleman. Other details are provided by Carlos Alberto Gómez Grajales in his
Created by statisticians for statisticians: How R took the world of statistics by storm appeared on
http://www.statisticsviews.com/view/index.html.

R is very well documented on the web; for instance, you can find free on line introductory
books, as the Hadley Wickham and Garrett Grolemund textbook [52] R for data science, avail-
able at https://r4ds.had.co.nz/, or as the Kim Seefeld and Ernst Linder textbook Statistics
Using R with Biological Examples, available at https://cran.r-project.org/doc/contrib/
Seefeld_StatsRBio.pdf. There are also lots of webpages, blogs and Moocs concerning R; for
instance:
• http://ncss-tech.github.io/stats_for_soil_survey/chapters/
• http://www.sthda.com/english/wiki/r-software

https://www.latextemplates.com/cat/books
https://www.latextemplates.com/cat/books
https://cran.r-project.org/mirrors.html
https://rdrr.io/snippets/
http://www.statisticsviews.com/view/index.html
https://r4ds.had.co.nz/
https://cran.r-project.org/doc/contrib/Seefeld_StatsRBio.pdf
https://cran.r-project.org/doc/contrib/Seefeld_StatsRBio.pdf
http://ncss-tech.github.io/stats_for_soil_survey/chapters/
http://www.sthda.com/english/wiki/r-software


12 Chapter 1. Data Presentation

• Quick-R, https://www.statmethods.net/
Many video tutorials are also available on YouTube, following the query https://www.youtube.
com/results?search_query=R+tutorial.

1.1.2 The R graphical interfaces

Instead of working directly on the R Console, many scientists prefer to use R Studio https:
//www.rstudio.com/ Integrated Development Environment (IDE). Beginners often find sufficient
to access to a selection of commonly-used R commands using ’familiar’ graphical user interfaces, as
R Commander, https://www.rcommander.com/, or as RKWard, https://rkward.kde.org/.
In the present book we explain how to work with R Commander; for simplicity we suppose
that both R and R Commander are already installed in your computer (otherwise, go back to
previous section and search within YouTube tutorials how to do it: there are some differences
between Windows or Linux procedures, which are simpler, and Mac, which needs a further little
effort). Simply activate the R Commander within the R Console typing:

Here an example R Commander appearance:

Figure 1.1: The R Commander environment, with its menus, the input section, the output section
and the alert messages section.

Typically, you see a menu environment with an input section named R Script which has been
created by the File New Script procedure, an Output section which lists the input commands and
produces the outputs, and a Messages section which eventually alerts you for mismatches.

https://www.statmethods.net/
https://www.youtube.com/results?search_query=R+tutorial
https://www.youtube.com/results?search_query=R+tutorial
https://www.rstudio.com/
https://www.rstudio.com/
https://www.rcommander.com/
https://rkward.kde.org/
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1.1.3 Possible alternatives
Of course, different laboratories and different scientists choose different softwares to analyse their
data. For instance, commercial packages like SAS, SPSS, or S+. Or other programming languages,
like Python. My favours also goes to the Slovenian python-based visual interface free software
Orange, https://orange.biolab.si/.

Figure 1.2: Orange is an open-source data visualization, machine learning and data mining toolkit.
It features a visual programming front-end for explorative data analysis and interactive data
visualization, and can also be used as a Python library.

1.1.4 Let us start making some practice with R
Let us start exploring R capabilities by loading and manipulating the famous Ronald Fisher [18] /
Edgar Anderson [4] iris didactical dataset.

We start a new script, simply entering the command:

> iris

Scrolling up and down the output, we recognise a dataset of 150 rows and 5 columns, named
respectively Sepal.Length, Sepal.Width, Petal.Length, Petal.Width and Species. The
first four columns provide numerical data, while the last column provide qualitative information
about the (three) different species of flowers considered.

Exercise 1.1 Try to understand what happens when inserting the following commands (similarly
to what professor Michael Crawley does in his reknowned reference book [12], TheRBook) :

> iris[1,]
> iris[1:6,]
> head(iris)
> iris[145:150,]
> tail(iris)
> iris[,1]
> iris[,c(3,4,5)]
> iris[,3:5]
> names(iris)

�

Observe that:

https://orange.biolab.si/
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> length(iris)

returns the number of the columns in the dataset, while if one tries, for instance:

> length(Species)

obtains a not-found error.

Exercise 1.2 Try what follows:

> length(iris$Species)
> with(iris, length(Species))
> attach(iris)
> length(Species)

�

Basic iris information can also be immediately retrieved by exploring the dataset structure:

> str(iris)

As we see, a typical bio/medical dataset collects both numeric (i.e. quantitative) and factor (i.e.
qualitative, nominal), and the different ’groups’ inside the factor are called levels.

Exercise 1.3 Try what follows, and discover at the end the R boolean constants:

> levels(Species)
> levels(Species)[2]
> is.numeric(Species)
> is.factor(Species)
> is.factor(Petal.Length)

�

Datasets can be easily sorted and filtered in R.

Exercise 1.4 Try what follows and discuss the output:

> iris[order(Sepal.Length), ]
> iris[order(Sepal.Width), ]
> iris[order(Sepal.Length, Sepal.Width), ]
> iris[rev(order(Sepal.Length)), ]
> iris[Species == "virginica",]
> iris[(Species == "virginica") & (Sepal.Length == 6.3),]
> iris[(Species == "virginica") & (Sepal.Length != 6.3),]

�

The iris dataset is an example of what is called a complete dataset, as all columns (’fields’,
’variables’, ’instances’) and all rows (’records’, ’observations’) has a known value. On the contrary,
let us consider the New York spring-summer 1973 airquality dataset.

> ? airquality
> attach(airquality)
> head(airquality)
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Vocabulary 1.1 — incomplete dataset. A dataset is said to be incomplete when we observe
some missing data, or missing values, that R represents with the symbol NA. In the example above,
we note that during May 5th neither the Ozone nor the Solar.Radiation have been collected.

In order to manage the missing values, we could decide to drop them away (this is a typical need
when working with regression trees or when training machine learning algorithms), or to identify
records in which missing values are present. Here we go:

Exercise 1.5 Try what follows and discuss the output:

> na.omit(airquality)
> complete.cases(airquality)
> which(complete.cases(airquality) == TRUE)

�

1.1.5 Let us start making some practice with R Commander
In this paragraph we want to learn ho to create a simple dataset and how to import it into R
Commander. Consider a didactical situation of eight patients, of different gender (women and
men), with a different health situation (orange and black) and of different age.

Just to start, we create ’by hand’ a dataset to describe the above depicted situation. To create it, we
need to arrange the data into a rectangular table, similar to the following:

Usually this task is performed using a spreadsheet (like MS Excel, Open Office - Libre Office
Calc, Google Sheet and so on) or by means of a ’table’ exported from some database. For simplicity,
we type the information into a text editor (for instance Windows Notepad, Bare Bones BBEdit,
SciTE / Geany, ..), using the comma symbol to separate the data:
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After saving this simple text with the file name example.csv (it means that data are separated
by the comma: csv = comma separated values), we can import the dataset example.csv into R
Commander following these steps. We (1) import data from text file from the Data menu; (2)
we specify that our field separator is the comma; (3) we scroll the dialogue window to search where
example.csv is located - in our case, the Desktop; and after opening it we obtain a blue message
confirming that an 8 rows and 3 columns dataset has been imported into R Commander.

To scroll the dataset (5) one can click the View data set button; and to quickly obtain some
descriptive statistics, as described in the next Chapter, one can follow the path (6) Statistics /
Summaries / Active data set, as depicted in the next page figure.
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1.2 Charts and Tables
After having read the Chapter 1 of Richard Mould textbook [34], we can discover the powerful
graphical capabilities of R; for instance, have a look to https://www.r-graph-gallery.com/.
To start, when having qualitative/nominal data, i.e. a factor, it is very simple to obtain a table
reporting the absolute frequencies encountered. Here we have an example:

> table(Species)

In R Commander one can follow the Statistics / Summaries / Frequency distributions menu:

Vocabulary 1.2 — balanced dataset. The iris dataset is said to be balanced as we observe
data with the same absolute frequencies in each group considered. In our example, fifty flowers
belonging to each of the (levels of the) Species setosa, versicolor and virginica have
been measured.

After creating a table, it is straightforward to draw a pie chart or a barplot - bar graph (and
have a look to professor Tian Zheng ’Colors in R’ http://www.stat.columbia.edu/~tzheng/
files/Rcolor.pdf to choose the perfect chromatic outfit of your wonderful picture):

> pie(table(Species))
> barplot(table(Species))
> barplot(table(Species), col = c("orange3", "orange2", "orange1"))

Wtih R Commander one simply scroll the Graphs menu:

https://www.r-graph-gallery.com/
http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf
http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf
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Exercise 1.6 What about a table in which not absolute but relative frequencies appears? (Hint:
try to exploit the length and the round commands.) �

R Further readings. To study in deep the statistics of categorical data we suggest to start with
the classical Alan Agresti textbook [1], An introduction to categorical data analysis, or the
recent M. Friendly and D. Meyer Discrete data analysis with R: visualization and modeling
techniques for categorical and count data [20]. If you need to do HTML or LATEXtables, read
https://www.r-bloggers.com/getting-tables-from-r-output/.

1.3 Histograms

Let us move from factor to numeric data, and let us carefully read what Richard Mould [34]
writes in his 1.4 paragraph:

In a histogram, the height of each vertical block does not always represent the value of the
variable of interest (unless the width of the block is unity), as is the case of a bar in a bar chart.
Also, in a histogram, the horizontal scale is continuous and not, like the bar charts, discrete.
Also, unlike a bar chart width, a histogram block width does have a meaning.

Let us explain in a precise way the following idea of relative frequency histogram, which is a central
concept linked to the Mould’s 2.6 Probability Density Function paragraph. We now follow the
Sergio Invernizzi (italian language written) textbook [25]. Let x = (x1,x2, . . . ,xn) be the n numeric
data considered and let c1 < c2 < c3 < .. . < cr , 2≤ r < n, a class partition with cut-off c j’s, such
that c1 = min(x) and cr = max(x). We obtain r−1 limited disjoint classes (or bins):

C1 = [c1,c2] , C2 = (c2,c3] , C3 = (c3,c4] , . . . , Cr−1 = (cr−1,cr]

Denote with n j the absolute frequencies of the x data falling into each class C j, and let f j = n j/n
the relative frequencies (1≤ j ≤ r−1). With these choices, the relative frequency histogram is
made by r−1 rectangles of bases C j and heights:

h j =
n j/n

c j+1− c j

Let’s make a step-by-step check, assuming to be x the Petal.Length in iris and wishing to draw
a simple r = 2 column histogram, with c2 = 5.0 as cut-off.
To start, we search for the minimum and maximum value of Petal.Length (note that if we insert
R sintax enclosed in round brackets we immediately obtain the screen printed output):

https://www.r-bloggers.com/getting-tables-from-r-output/
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> (c1 = min(Petal.Length))
> (c3 = max(Petal.Length))
> hist(Petal.Length, breaks = c(1, 5, 6.9))

Now we compute the bases and the heights of the two rectangular blocks:

> (n1 = sum(Petal.Length <= 5))
> (n2 = sum(Petal.Length > 5))
> (C1 = (5 - c1))
> (h1 = (n1/150) / C1 )
> (C2 = (c3 - 5))
> (h2 = (n2/150) / C2)

Exercise 1.7 Please, visually check the values obtained by algebraic calculations and confront
them with the histogram. Then, quickly answer to the following question:

4 ·0.18+1.9 ·0.1473684 = ?

Now go back to Mould’s quotation and reflect on those words. �

1.4 Scatter Diagrams
It is simple to draw a cartesian x-y scatter plot:

> plot(Petal.Length, Petal.Width)

and to add colors information with the col option:

> plot(Petal.Length, Petal.Width, col = Species)

On the cartesian plane you can also sketch mathematical functions: suppose you are interested in
drawing the y = 2.37 · e−0.68·x function on the interval x ∈ [−4,4]. One possibility is to define an R
function; here it is the code:

> expo = function(s){ 2.37 * exp(-0.68 * s) }
> x = seq(from = -4, to = 4, by = 0.01)
> y = expo(x)
> plot(x,y)

Exercise 1.8 Explore the help menu to discover a number of graphical possibilities:

> ? lines
> ? points
> ? par

�

R Further readings. To obtain very elegant and readble scatter plots, even handling big data, try
to use the ggplot2 library, which belongs to the tidyverse ’ecosystem’ https://ggplot2.
tidyverse.org/. In detail, refer to the online free book https://r4ds.had.co.nz/
R for Data Science, by Garrett Grolemund and Hadley Wickham [52]. Moreover, Selva
Prabhakaran in his r-statistics.co blog offers a free tutorial, http://r-statistics.co/
Complete-Ggplot2-Tutorial-Part1-With-R-Code.html.

https://ggplot2.tidyverse.org/
https://ggplot2.tidyverse.org/
https://r4ds.had.co.nz/
http://r-statistics.co/Complete-Ggplot2-Tutorial-Part1-With-R-Code.html
http://r-statistics.co/Complete-Ggplot2-Tutorial-Part1-With-R-Code.html
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1.5 Linear and Logarithimic Axes
One of the ’historical’ R reference books is the Modern Applied Statistics with S [46] of Bill
Venables & Brian Ripley. They have also released an add-on R package collecting various dataset
discussed into their textbook, and we need to load the mammals one:

> library(MASS)
> attach(mammals)

Scrolling the dataset, you will find the huge 6 tons african elephant and the minuscule 5 grams
canadian shrew, and clearly it is difficult to depict the situation using plot(body, brain), as you
see on the left panel below. Therefore, changing the coordinate axes by the log function is a natural
idea:

plot(log(body), log(brain))

1.6 More plots
While pie charts and histograms can be used to depict a situation (respectively described by factor
and numeric variables) in an univariate statistical analysis, the scatter plot is a typical graph used
in the bivariate statistical analysis within two numeric variables. In the next Chapters, we are
going to introduce more useful graphs, as boxplots (section 2.4), mosaic plots (section 3.1) and
ROC curves (section 3.1.2).



2. Describing Distributions

2.1 Introduction
Besides simple graphical information, we shall need to ’summarise’, to ’abridge’ a dataset by
means of numerical information. To practice, we try to analyze a dataset concerning the incidence
of leukemia, lymphoma and multiple myeloma among atomic bomb survivors (1950-2001), as
reported in the 22.4 paragraph of Mould’s textbook. We therefore retrieve (after having registered
our names and affiliations) the 5.1 Mb lsshempy dataset, published in https://www.rerf.or.
jp/en/library/data-en/. After having downloaded and unzipped the folder, you can import
the dataset into R with the read.csv command:

> lsshempy = read.csv(file.choose(), header = TRUE)
> attach(lsshempy)

2.2 Mean, Mode and Median: the measure of central tendency
In his 2.2 paragraph, Richard Mould [34] recalls three measures of central tendency (or as he and
Bernard Rosner [38] prefer, three measures of location).

To find the mode of a factor variable, we simply use the table instruction:

> table(sex)
> max(table(sex))
> which( max(table(sex)) == table(sex))

and we see that the 2’s (Female) appears 19827 times, against the 18751 1’s (Male); therefore,
Female is the modal character of the distribution.

Exercise 2.1 Discover what happens in R if you invoke the mode function:

https://www.rerf.or.jp/en/library/data-en/
https://www.rerf.or.jp/en/library/data-en/
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> ? mode

�

Note that the mode is the typical central tendency measure of factor data. Nevertheless, it is also
correct to deal with the mode in a numeric variable; as an example, in the 3.2.1 section we will
discuss of the famous bimodal female vs. male height distribution.
Now, explore agxcat (Age at exposure categories) and mar_ag (Person year weighted mean
weighted adjusted truncated DS02 Bone Marrow Gamma) variables: they are both numeric
variables, but they belong, in a sense, to different mathematical sets - the latter belongs to the
continuous line R, the former to the ordered ring Z (some authors, like Martin Bland[7], use the
term discrete versus continuous data).
Therefore, to ’summarise’ the continuous mar_ag variable the arithmetic mean (approximatively
544.7) appears to be suitable:

> mean(mar_ag)

If you need to quickly calculate the mean within groups (for instance, the means of the bone marrow
gamma rays person-year in city 1 (Hiroshima) and 2 (Nagasaki)), one can exploit the tapply
function:

> tapply(mar_ag, city, mean)

On the contrary, to ’summarise’ the discrete agxcat variable the arithmetic mean is not a clever
idea; it is wise to exploit the median, which is 6:

> median(agxcat)

2.3 Standard Deviation, Variance and other measure of dispersion

In his 2.4 paragraph, Richard Mould [34] use the term measures of shapes (many other authors
prefer to say measures of dispersions) to introduce the standard deviation and the variance of a
numeric variable, which can be easily calculated with:

> sd(mar_ag)
> var(mar_ag)

Exercise 2.2 Guess what happens when in R you type:

> sd(mar_ag)^2 == var(mar_ag)
> sd(mar_ag) == sqrt(var(mar_ag))

�
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R Remark. Observe that R possess only the sd function to compute the standard deviation,
while the spreadsheets (MS Excel, O.O. Calc, Google Sheets, ..) have – at least! – a couple
of functions, usually named STDEV.S and STDEV.P. Doing statistics, we are almost always
involved with data coming from a sample, i.e. a subset of the whole population. And, having
x = (x1,x2, . . . ,xn) a sample size n, to compute the standard deviation we need to calculate
in advance the sample mean M = ∑x j/n; therefore, having estimated M, it is necessary
and sufficient to know only (x1,x2, . . . ,xn−1) to algebrically deduce xn – exploiting the M
information. This is the reason why Statisticians refers to Physics in saying that there are only
n−1 degrees of freedom in estimating the sample standard deviation: and this is the reason
why in the formula of the 2.4 Mould’s[34] paragraph that ’strange’ n−1 denominator appears.
While, working with a whole population an n denominator is required (but in biostatistics this
seldom occurs).

When we deal with ordered (discrete) data, as in agxcat variable, there are many possibilities to
choose. Suppose [25] , without loss of generality, that the sample x = (x1,x2, . . . ,xn) is already
ordered, x1 ≤ x2 ≤ . . .≤ xn. We introduce here the quantiles.
Vocabulary 2.1 — Quantiles. Let us denote with L the median of x: L divide the sample x into
two subsets, the first half and the second half. If we compute the medians of those two halves we
obtain respectively the first quartile Q1 and the third quartile Q3 (being the median L the second
quartile, min(x) the zeroth quartile and max(x) the fourth quartile). If we split x in ten sections
instead of two, one can define the first, second, ... deciles. And again, splitting x in one hundred
sections, we compute the percentiles. Quartiles, deciles and percentiles are examples of quantiles.

Exercise 2.3 Type in R what follows and discuss the results:

> median(agxcat)
> quantile(agxcat, 0.50)
> summary(agxcat)
> quantile(agxcat, 0.25)
> quantile(agxcat, 1)

�

2.4 Box and Whiskers Plot

The legendary chemist, mathematician and statistician John W. Tukey, https://en.wikipedia.
org/wiki/John_Tukey, introduced this type of data visualization:
The left panel has been obtained with the command:

> boxplot(agxcat)

https://en.wikipedia.org/wiki/John_Tukey
https://en.wikipedia.org/wiki/John_Tukey
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it depicts the elements provided by the summary, i.e. min(agxcat), quantile(agxcat, 0.25),
quantile(agxcat, 0.50) in bold, quantile(agxcat, 0.75) and max(agxcat). The spac-
ings between the different parts of the box (which, of course, encompasses the 50 per cent of the
data) indicate the ’degree’ of dispersion (spread) and the skewness – as discussed in the next 2.5
paragraph – in the data. The wiskers describe the tails of the distribution.
The right panel refers to iris dataset and it has been drawn with the command (note the use of
the tilde character, ∼, which for example can be recalled by the keyboard numeric pad with the
combination ALT+126):

> boxplot(Petal.Length ~ Species)

As you see, in setosa and in versicolor boxplots some isolated points appear. They are the
so-called outliers, as defined by Tukey himself: consider the interquartile range , IRQ=Q3−Q1,
’amplify’ it by a 50% , 1.5 · IRQ, and search if there are points x j ∈ x such that x j <Q1−1.5 · IRQ or
x j > Q3+1.5 · IRQ. It can be shown (e.g. [24, page 29]) that outliers are not so rare in experimental
measures: asymptotically, 0.7% of data.

R The boxplot is an univariate graph. But there exist – although not so frequently used
(unfortunately, I say) – the Rousseeuw & Ruts & Tukey bivariate bagplot, https://en.
wikipedia.org/wiki/Bagplot, available in the ’Another PLot PACKage’ aplpack [39].

2.5 Skewness

Once upon a time, the skewness (https://en.wikipedia.org/wiki/Skewness) measure of
asymmetry and the kurtosis (https://en.wikipedia.org/wiki/Kurtosis) measure of ’fat
tails’ were commonly calculated and used in literature to describe data distribution. Nowadays
these concepts seems to be buried in dust: ever R do not possess ’standard’ function to compute
them, but you need – for instance – to load the library(fBasics) and to call the basicStats
function.
Nevertheless, skewness plays an important role – and a boxplot reveals it immediately – when our
mind try to perceive the data distribution only knowing some descriptive statistics, as it happens
when reading literature. Let us make an example to be more clear.

https://en.wikipedia.org/wiki/Bagplot
https://en.wikipedia.org/wiki/Bagplot
https://en.wikipedia.org/wiki/Skewness
https://en.wikipedia.org/wiki/Kurtosis
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Consider the study of professor Kersti Pärna ahd her colleagues regarding the alcohol consumption
in Estonia and Finland, https://doi.org/10.1186/1471-2458-10-261. Have a look to their
Table 5:
Unaware readers might not perceive – as very often in literature it is (mis)used the symbol ’Mean
± SD’ – the skewness of the data, and (joking) they could mantein that, as 128−147 =−19, in
Estonia there exist some drinkers whose body do not consume, but ’produce’, alcohol. This is the
reason why, when data are skewed, I prefer to avoid to describe them by mean(sd), preferring to
use the Tukey five numbers summary.
Skewness, and kurtosis, are in effect ’the responsibles’ for the fact that the famous Čebišev inequality
(http://mathworld.wolfram.com/ChebyshevInequality.html) is so ’poor’: it would be
possible to create artificial data x, all of them very far from the mean, such that P(|x−M| ≥ S)≤ 1.

2.6 Coefficient of Variation
Coefficients of variation are particularly useful when observations with different

dimensions are being compared, such as UK sterling and US Dollars. A dimensionless
measure of dispersion is then very convenient. (R. Mould, 2.5 [34])

Remembering how the R function was introduced in section 1.4, we propose you to solve this
exercise:

Exercise 2.4 Write an R function called cv that computes the coefficient of variation of a
numeric vector (Hint: exploit the inner functions sd and mean). Check that agxcat and mar_ag
have a coefficient of variation of, respectively, 59.3% and 143%. �

2.7 Probability Density Function

In the next chapter 3.1 we will recall some basic aspects of probability. But, in his 2.6
paragraph[34], R. Mould recalls the meaning of a density function in view to discuss further the
concept of continuous random variable, from the analytical point of view (i.e. on vector space R).
Let us now recall that in Medical Statistics very often one deals also with finite random variables.
Consider for instance the Table 4.3 of the Fundamentals of Biostatistics of Bernard Rosner [38,
page 84], concerning the number of episodes of otitis media in the first two years of life. The finite
random variable associated is represented by a ’two rows matrix’:

https://doi.org/10.1186/1471-2458-10-261
http://mathworld.wolfram.com/ChebyshevInequality.html
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(
0 1 2 3 4 5 6

0.129 0.264 0.271 0.185 0.095 0.039 0.017

)
The first row describe all the possible events, while the second row precise their single success
probability; and the function which associates the event to its probability is called probability
mass function, or discrete density function. We will discuss better those aspects later in paragraph
3.2 , talking of binomial and of Poisson random variables.

Figure 2.1: Estimating a continuous density function

Turning back to continuous density functions, let us recall what Venables and Ripley explain very
well in their Figure 5.8 [46, pages 127-128]:

The histogram with probability = T is of course an estimator of the (continu-
ous) density function. The histogram depends on the starting point of the grid of bins.
The effect can be surprisingly large.

R language possesses the density function which (depending on the user’s choice of a bandwidth
and of a kernel) fits a numerically estimated density function, as in Figure 2.1.

Exercise 2.5 Referring to the lsshempy person-year weighted mean attained age, insert in R
the following code, and discuss step-by-step its syntax:

> par(mfrow = c(1,2))
> hist(age)
> plot(x = c(0, 110), y = c(0, .02), type = "n", bty = "l", xlab = "age",
ylab = "density")
> lines(density(age), lty = 3)
> rug(age)

�
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3. Concepts of Probability

3.1 Overview of Probability
Usually, a graduate Physicist knows a lot of probability (on average, more than a graduate Mathe-
matician, at least here in Italy) and therefore

Here we are simply going to recall some practical aspects of applied probability; we are
moving ourselves in the framework of a cross-section experimental design, as explained in the
23.5 paragraph of Mould’s textbook [34].
Ten years ago, Richard Moore et al. published [33] the ’R.O.M.A., Risk of Ovarian Malignancy
Algorithm’, a method to estimate benign vs. malignant probability in an ovarian mass. Shadi Najaf,
a gynæcologist now at the Kantonsspital Baden, Zürich (Swiss), explored the possibility to enhance
that algorithm. Her roma dataset can be loaded and explored in R directly from the web with these
instructions:

> www = "http://www.biostatisticaumg.it/dataset/roma.csv"
> roma = read.csv(www, header = TRUE)
> attach(roma)
> head(roma)
> tail(roma)

As you see with the tail command, Shadi Najaf observed 210 patients with an ovarian mass, and
she researched whether the Histology may be associated, in a statistical sense, to AgePatients,
to their Menopause status, and to four candidate biomarkers (logaritmic transformed): logHE4,
logCA125, logCA19.9 and logCEA. Let us start exploring Menopause and Histology with a
contingency table:

> table(Histology, Menopause)
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ante post sum

benign 106 65 171
malignant 12 27 39

sum 118 92 210

Table 3.1: Menopausal status as a possible predictor of malignancy in ovarian cancer in the Shadi
Najaf research.

Figure 3.1: How to create a contingency table with R Commander

Exercise 3.1 Explore the output of the following instructions:

> thm = table(Histology, Menopause)
> thm
> thm[2,]
> thm[,2]
> thm[1:4]
> thm[4]
> thm[2,2]
> sum(thm[1:4])
> sum(thm)
> plot(thm, col = c("orange", "violet"))

�

Figure 3.2: A mosaic plot.

Figure 3.2 is called a mosaic plot, and the area of the four rectangles is proportional to the counts
in the cells of (the transpose of) Table 3.1; orange coloured rectangles depict the ante Menopause
women. In Table 3.1 we see that 39 women over 210 has been diagnosed with a malignant ovarian
tumor; so one could estimate the relative frequency, i.e. an estimate of the disease (frequentist)
probability to be around the 19 percent (of course not within the whole healthy population, but
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within women with certain precise symptoms known to the Gynæcologists):

P(malignant) =
39
210

= 0.186...

Vocabulary 3.1 — Prevalence. In a cross-section design, the prevalence of the disease into a se-
lected subpopulation described by some precise inclusion criteria is represented by its (frequentist
marginal) probability.

Exercise 3.2 Try what follows:

> sum(thm[2,])/sum(thm)
> 39/210

�

Such marginal probability does not distinguish whether women are in their ante-menopausal or post-
menopausal status. So we look to the inner columns of the table, i.e. we estimate the conditional
probability:

Pr(malignant|ante) =
12
118

= 0.102...

Pr(malignant|post) =
27
92

= 0.293...

Those numbers appears to be different (and in the mosaic plot 3.2 the ’horizontal aisle’ is not
straight): a post-menopausal woman appears to have a triple risk than an ante-menopausal woman.
Therefore, we can argue that Menopause and Histology are not independent events, but they are
(in a statistical sense to be better precised later, in section 5.3.4) associate events.
By the way, we recall here two commonly used association measure; the first is the odds ratio:

O.R.=
106 ·27
65 ·12

= 3.67

and when O.R. is ’far away from’ 1 (i.e. close to 0 or to +∞), then rows – and columns – are ’far
away’ from proportionality, and therefore one event (e.g. menopausal status ante / post) provide ’a
certain quantity of information’ to the other event (e.g. to be ante / post inform us on benign /
malignant response). Another common association measure is the relative risk (i.e. the ratio of
the conditional probabilities):

RR =
27
92
12

118

=
27
92
· 118

12
= 2.89

Exercise 3.3 The odds ratio can be found by the following command, later explained:

> fisher.test(thm)

�

Exercise 3.4 Relative risk and odds ratio are dependent. Explain:

> OR = (27*106)/(12*65)
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> RR = (27*118)/(92*12)
> RR
> OR + (1-OR)*(27/92)
> OR*(65/92) + (27/92)

�

In a contingency table, marginal probabilities and conditional probabilities are ruled by the famous
Bayes theorem:

P(malignant|ante) =
P(ante|malignant)

P(ante)
·P(malignant)

The proof is straightforward. Let us simply check the relation in our example:

12
118

=
(12/39)
(118/210)

· 39
210

12
118

=
12
39
· 210

118
· 39

210

12
118

=
12
118

3.1.1 Sensitivity, specificity and predictive values

Let us read the Mould’s paragraph 19.1 definitions [34] in view of our Table 3.1.

Sensitivity is the probability of a positive test in people with the disease. (...) Speci-
ficity is the probability of a negative test in people without the disease.

In our Table 3.1, sensitivity and specificity are the conditional probabilities P(post|malignant) and
P(ante|benign), Sens = 27/39 = 69%, while Spec = 106/171 = 62%. Sensitivity and specificity
are characteristics of a test and are not affected by the prevalence of the disease [6]. But those
quantities are not suitable in assessing the ’quality’, the ’usefulness’ of a clinical test (i.e to answer
to the question ’is it relevant to know about the menopausal status in order to foresee malignancy?’).
Therefore one considers [34]:

Positive predictive value (PPV) is the probability of the person having the disease
when the test is positive. (...) Negative predictive value (NPV) is the probability of
the person not having the disease when the test is negative.

In our Table 3.1, PPV = P(malignant|post) = 27/92 = 29% and NPV = P(benign|ante) =
106/118 = 90%. Unfortunately, although the PPV and NPV give a direct assessment of the
usefulness of the test, they are affected by the prevalence of the disease [6]. This is the reason why
often researchers move to the likelihood ratioes [6].

R To discuss better the relation between PPV, NPV and other concepts as likelihood ratios, pre-
test probability, post-test odds, Youden’s index see Viv Bewick, Liz Cheek and Jonathan Ball
Statistics review 13: Receiver operating characteristic curves[6] paper, published on line in
the Medical Statistics series of paper, https://www.biomedcentral.com/collections/
CC-Medical

https://www.biomedcentral.com/collections/CC-Medical
https://www.biomedcentral.com/collections/CC-Medical
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3.1.2 the ROC curve
All previous quantities (sens, spec, PPV, NPV, ..) can be easily calculated inRby several packages:
for instance ROCR[41] and pROC[36]. Such packages are suitable to draw a particular graph, called
the receiver operating characteristic, i.e the ROC curve. Its history is recalled in:
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
It is known[40] that HE4 can be considered an ovaric tumor biomarker. Suppose we are interested
in finding a proper logHE4 cut-off value, within the roma dataset, in order to ’maximize’ the
sensitivity and the specificity with respect to the Histology outcome. Let us make three naive
attempts, choosing as cut-off respectively 3, 4 and 5:

> cutoff3 = logHE4 > 3
> table(Histology, cutoff3)
> cutoff4 = logHE4 > 4
> table(Histology, cutoff4)
> cutoff5 = logHE4 > 5
> table(Histology, cutoff5)

≤ 3 > 3 sum

benign 1 170 171
malignant 0 39 39

sum 1 209 210

≤ 4 > 4 sum

128 43 171
7 32 39

sum 135 75 210

≤ 5 > 5 sum

170 1 171
23 16 39

sum 193 17 210

Note that on the left table, the 3 cut-off is too low: the sensitivity is perfect, 39/39 = 100%, but
the specificity is nearly null, 1/171 < 0.1%. On the contrary, the 5 cut-off is too high: now the
sensitivity is about like tossing a coin, 16/39 = 41%, while the specificity is nearly optimal in
terms of a population screening test, 170/171 > 99%. So we could ideally search for an optimal
cut-off just ’pinching’ 3 and 5 somewhere toward 4. Using for instance library(pROC) everything
is simple:

> library(pROC)
> roccurve = roc(Histology ~ logHE4)
> roccurve
> coords(roccurve, "best")

We re-discover that there are 171 controls versus 39 cases, and that fixing a cut-off in 4.1 we obtain
the ’best’ trade-off in sensitivity, 82.1%, and in specificity, 82.5%. Figure 3.3 depicts the situation;
the black/orange points is the nearest point, in term of Euclidean metric (i.e. Pythagorean theorem),
to the top-left corner – which represents the theorical optimal point with no false positive and no
false negative (i.e. sensitivity = specificity = 100%). The output provides also the area under the
curve (i.e. the L1 norm of the graph).

> plot(roccurve)
> points(0.8205, 0.8246, lwd = 2, pch = 21, col = "black", bg = "orange")

3.2 Commonly used random variables
In paragraph 2.7 the concept of finite random variable has been introduced. Let us show how to
simulate with R the otitis variable; here a sampling with replacement experiment of 1000 random
extraction, and the relative barplot are coded. We shall use sample:

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
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Figure 3.3: ROC curve analysis

> otitis = 0:6
> simulation = sample(otitis, size = 1000, replace = TRUE,

prob = c(0.129, 0.264, 0.271, 0.185, 0.095, 0.039, 0.017))
> simulation
> barplot(table(simulation))

Exercise 3.5 Try to modify the above code in order to simulate 100 tossing of a fair coin. �

Richard Mould’s chapters 3, 6 and 7 [34] are devoted to discuss some typical random variables
commonly used in biostatistics. Let us now learn the meaning of the d, q, p and r prefix symbols
combined to some random variables defined in R, starting from the most important case.

3.2.1 The Normal Distribution

To start, let us start drawing the 3.3 Mould’s paragraph figure, as above. Here you find the code:

> x = seq(from = -3, to = 3, by = 0.01)
> ysolid = dnorm(x, mean = 0, sd = 1)
> ydash = dnorm(x, mean = 0, sd = 0.8)
> plot(x, ydash, lty = 2, "l", xlab = "Unit normal deviate x", ylab = "")
> lines(x, ysolid, lwd = 2)
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Here the key instruction is dnorm, (i.e. the density of the normal random variable, as tabulated
in his Table 3.1(b)), while to compute the probabilities of his Table 3.1(a) – Area P beneath the
standard normal curve, between the limits X = ζ and X =+∞ – we can use the instruction pnorm
(p stands for probability). For instance, to check the words written by R. Mould:

Thus for ζ = 2.54, the required area is P = 0.0055426 (R. Mould, [34] Table
3.1(a)).

we use:

> 1 - pnorm(2.54)

Lastly, to compute exactly the quantiles, i.e. the multiples of standard deviations (i.e. Number of
SDs, also called the deviates) in his Figure 3.3, we exploit the qnorm command:

> qnorm(0.025)
> qnorm(0.05)

Very often we have to decide whether some data are or not distributed according a normal distribu-
tion; R. Mould [34] claims:

In the first paragraph of this section it was stated that a more rigorous test than
visual assessment of a normal probability graph plot should be used.

In the next chapters we will discuss about testing for normality using the test of Samuel Shapiro
and Martin Wilk (see section 5.3.2). Meanwhile, we introduce a very useful graph called the
quantile - quantile plot (i.e. the Q-Q plot). For this, we generate twenty (pseudo)random
numbers normally distributed with the rnorm command (the set.seed is here for reproducibility):

> set.seed(1234)
> simulation = rnorm(20)

When data are normally distributed, they (approximately) tends to lay on the ’diagonal’ of the Q-Q
plot (i.e. the violet dashed line intersecting the first and third quartile of the orange triangle shaped
sample.)

> qqnorm(simulation, col = "orange", pch = 17)
> qqline(simulation, col = "violet", lty = 2)

To read in deep the details, see for instance https://en.wikipedia.org/wiki/Q%E2%80%93Q_
plot. The Q-Q plot will be very useful in assessing the ’quality’ of the linear models in the
forthcoming Subsection 6.2.3.

https://en.wikipedia.org/wiki/Q%E2%80%93Q_plot
https://en.wikipedia.org/wiki/Q%E2%80%93Q_plot
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Figure 3.4: The quantile - quantile normal plot

R The rnorm command generates one dimensional normal data. Often it is required to deal
with bivariate normally distributed random points: in that case the notion of correlation
(between the marginal one-dimensional distributions) is required. Here the code to generate
500 random bivariate points, respectively of mean 1 and 3, and standard deviation 2 and 4, on
the x and y axes, with correlation of 75%:

> mx = 1; sx = 2
> my = 3; sy = 4
> n = 500; r = 0.75
> n1 = rnorm(n); n2 = rnorm(n)
> n3 = r * n1 + sqrt(1-r^2) * n2
> xx = mx + sx * n1; yy = my + sy * n3
> par(mfrow = c(1,2))
> plot(xx, yy); boxplot(xx, yy)

The sum of normal variables is, or is not, normal?

Do two dromedaries make a camel? It’s a funny question, but there is in literature a bit of mess
about the ’sum’ of two normal variables. Let us read the authoritative Bernard Rosner [38, page 135]

.. linear combination of normal random variables are often of specific concern. It
can be shown that any linear combination of normal random variables is itself normally
distributed.

And now, let us move to Martin Bland [7, page 111]:

... If we add two variables from Normal distributions together, even with different
means and variances, the sum follows a Normal distribution.
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The two statements are misleading; it seems that there is a confusion between things happening
R×R= R2 or in R. As a famous counterexample, we recall the Living histograms of Brian Joiner
[25, 27], in which the tallers (mostly, boys) stay on the right of the photo of the next page, while
the smallers (mostly, girls) are on the left: the distribution suggests an immediate bimodality, and
therefore normality is clearly excluded (i.e. two dromedaries do not make a camel). We will discuss
such important case in 6.2.3 subsection.
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In particular, in a 1947 number of Nature, S. Vaswani [45] provide a counterexample, recalled and
enlarged by C. Kowalski in his 1973 Non-Normal Bivariate Distributions with Normal Marginals
[29]. And in 1982, E. Melnick and A. Tenenbein, with their Misspecifications of the Normal
Distribution [31], provide a clear response:

Question 3: are linear combinations of normally distributed random variables always
normal? The answer to this question is no and it can be illustrated by using the example
in Question 2 ... linear combinations of normal random variables need not themselves
be normal. The correct statement is that any linear combination of random variables
from a multivariate normal distribution is normally distributed.

3.2.2 The Lognormal Distribution
In his paragraph 3.6, R. Mould [34] (and in particular in Figure 3.7) introduces the lognormal
distribution, which in R is managed by the commands dlnorm, plnorm, qlnorm, and rlnorm.
Typical log-normal distributed data are patients’ body mass indexes [19] (and this represents a
typical pitfall in recent literature). We suggest to read the nice paper by the swiss scientists Limpert,
Stahel and Abbt, Log-normal Distributions across the Sciences: Keys and Clues, [30].

Exercise 3.6 Simulate 10000 throws of three dice (hint: use sample), and draws two barplot:
one relative to the sum of their faces, one to the product of their faces. What do you see? �

3.2.3 The Binomial Distribution
Let us re-examine the exercise in paragraph 3.2 of tossing 100 times a fair coin: instead of using
sample, we can exploit one of the four commands dbinom, pbinom, qbinom, and rbinom. But
have a look to the syntax:

> set.seed(1234)
> rbinom(n = 100, size = 1, prob = 0.5)
> rbinom(n = 1, size = 100, prob = 0.5)

Exercise 3.7 In Mould’s 6.3 paragraph we read: A binomial situation of historical importance
is the work of Sir Edward Jenner on smallpox vaccination (an enquiry into the causes and effects
of the variolae vaccinae, 1798). A sample of 23 people was infected with cowpox (n = 23). The
probability of contracting smallpox when inoculated with the virus was some 90% (p = 0.9), but
none of the previously vaccinated 23 people did in fact contract smallpox (r = 0). The binomial
probability of such an event occurring is exceedingly small, and the observations are therefore
definitely not random. Compute with R such ’exceedingly small’ probability. �

3.2.4 The Poisson Distribution
Born as a distribution ot the number of occurences of a rare event, i.e. with ’small’ probability p in
n independent trials and closely connected to the binomial distribution [37], the Poisson distribution
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is nowadays applied not only to rare events but to generic ’count’ problems. Let us move, for
instance, to the Figure 7.4 of Daniel Zips, Tumour growth and response to radiation, collected in
[28]. Let us read his words about the local tumour control:

If not a single tumour but a group of tumours (or patients) is considered, the local
tumour control probability (TCP) as a function of radiation dose can be described
statistically by a Poisson distribution of the number of surviving clonogenic tumour
cells (...). As an illustration, one might imagine that a given radiation dose causes a
certain amount of ’lethal hits’ randomly distributed within the cell population. Some
cells will receive one ’lethal hit’ and will subsequently die. Other cells will receive
two or more ’lethal hits’ and will also die. However, some cells will not be hit, will
therefore survive and subsequently cause a local failure. According to Poisson statistics,
a radiation dose sufficient to inflict on average one ’lethal hit’ to each clonogenic cell
in a tumour (number of ’lethal hits’ per cell, m, = 1) will result in 37 per cent surviving
clonogenic cells.

In that example, the Poisson distribution has the intensity parameter λ = 0.37 (or using Mould’s
notation of paragraph 7.1, the mean number m of events). Let us try to simulate the situation with
the syntax: rpois(36, lambda = 0.37)

Exercise 3.8 Use the R command matrix to transform the 36 length vector in a square table. �

3.2.5 The Uniform Distribution
To conclude this random variables review, remember that with runif we can generate numbers
uniformly distributed. For instance, instead of using sample or rbinom to toss a fair coin, we can
try: trunc(2 * runif(100)) .





4. Introduction to Sampling

4.1 Sampling Distribution of the Sample Mean

Let us carefully read R. Mould’s words written in his 4.1 paragraph:

In statistical parlance the term population refers to the group of objects, events,
results of procedures or observations (rather than the geographical connotation of
population relating only to persons in a country or state etc) which is so large a
group that usually it cannot be given exact numerical values for statistics such as the
population mean µ or the population standard deviation σ . These statistics therefore
can only be estimated.

To obtain for example, an estimate of the population mean µ of a certain character-
istic x of the population, sampling must first take place because all the values of x for
the entire population cannot be measured. Only a small part of the population can be
surveyed and that part is called a sample.

There are various methods of sampling, including random sampling, which for
clinical trials is discussed in a later chapter as simple randomisation, stratified ran-
domisation and balanced randomisation. (...)

From a knowledge of this sample the sample mean xm can be found and a statistical
inference (i.e. drawing a conclusion about a population from a sample) can be drawn
about ’how good’ is this value xm as an estimate of the true population mean µ . The
phrase ’how good’ can be stated in terms of confidence limits.

The standard deviation sm of the sample mean xm tells you about the spread of the
measured sample values x1,x2, . . . ,xi, . . .. (...) If the sampling experiment to measure
xm is then repeated N times, with the sample size n always remaining the same, a total
of N values of xm will be obtained. If these are then averaged, then M , which is the
mean of means or grand mean is obtained.

The standard deviation of the mean of means M is given a special name: standard
error of the mean, where SE = Sample Standard Deviation /

√
n
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We want to be sure to understand all these details, which are related to some ’epic fail’ made for
about six centuries by the London Royal Mint, or to the kidney cancer rate and rural american
lifestyle, or to the USD 1.7 billion spending by Bill and Melinda Gates Foundation in support to
small schools, as Richard Wainer tells in his The most dangerous equation [48].

Let us import into R data concerning 1025 Triestiners healthy blood donors, in particular relative to
their HDL cholesterol .

> www = "http://www.biostatisticaumg.it/dataset/cholesterol.csv"
> cholesterol = read.csv(www, header = TRUE)
> attach(cholesterol)
> tail(cholesterol)
> hist(HDLchol, freq = FALSE, col = "lightgrey")
> rug(jitter(HDLchol), col = "grey")
> lines(density(HDLchol), lwd = 3, lty = 2)

We are interested in estimating the unknown HDL cholesterol mean µ of the whole Triestine healthy
population. Let us ’extract’ the first sample of ten donors (i.e. n = 10), and then the second sample
of the next ten donors, and then the third, and again and again; and then we compute the means:

Actually, we are required to repeat N = 102 times the sampling experiment to measure the N = 102
sample means, with the sample size n = 10 always remaining the same. Let us use a for cycle,
storing in the vector storesamplemean the N = 102 sample means:
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> storesamplemean = numeric(102)
> for(i in 1:102)
> {
> inf = (10*(i-1)+1)
> sup = (10*(i-1)+10)
> storesamplemean[i] = mean(HDLchol[inf:sup])
> }

Now, what about the distribution of storesamplemean ?

boxplot(storesamplemean, horizontal = TRUE)

And now, what about the mean of storesamplemean, with respect to the mean of HDLchol?

Well, this could be quite a surprise, but it is the Jakob Bernoulli Weak Law of Large Numbers
Theorem. And, lastly: what about the standard deviation of storesamplemean, with respect to
the standard deviation of HDLchol? Here it arises the definition of standard error of the mean,
s/
√

n:

This is astonishing, and it is the Jarn Lindenberg and Paul Lévy Central Limit Theorem, which also
justifies the nice symmetry of the above boxplot:

Theorem 4.1.1 — Lindenberg-Lévy Central Limit Theorem. Suppose (Xi)i∈N is a sequence of
independent and identically distributed random variables with E[Xi] = µ and Var[Xi] = σ2 <+∞.
Then as n approaches infinity, the random variables

√
n(Sn− µ) converge in distribution to a

normal N(0,σ2).

R In biomedical literature often there is unclearness, or even misuse, regarding the two concepts
of dispersion, measured by the standard deviation s of the sample, and the ’pratical’ meaning
of the standard error s/

√
n, which is a measure of reliability [7, 12].





5. Introduction to statistical significance

Let us ’melt’ the Chapters 8 and 11 of R.Mould’s textbook [34], recalling and interpreting step by
step the R code to analyse the historical example of the mathematician and chemist William Gosset
a.k.a. ’Student’. The history is recalled for instance in: https://www.encyclopediaofmath.
org/index.php/Gosset,_William_Sealy.

Not Kiln-Dried Kiln-Dried Difference

1903 2009 +106
1935 1915 -20
1910 2011 +101
2496 2463 -33
2108 2180 +72
1961 1925 -36
2060 2122 +62
1444 1482 +38
1612 1542 -70
1316 1443 +127
1511 1535 +24

Table 5.1: The original data of Student published in Biometrika [43, page 24].

Let us describe the William Gosset/Student question, as reported in his fundamental paper [43]; he
had in particular to decide whether an ante-litteram ’agricultural biotechnology’ treatment is useful,
or not, in increasing the production of Dublin’s Guinness beer, i.e. to dry seeds into a special oven
before seeding. Here Gosset’s words:

To test whether it is advantage to kiln-dry barley seed before sowing, seven varieties
of barley were sown (both kiln-dried and not kiln-dried) in 1899 and four in 1900; the
results are given in the table (5.1), expressed in Lbs. head corn per acre.

https://www.encyclopediaofmath.org/index.php/Gosset,_William_Sealy
https://www.encyclopediaofmath.org/index.php/Gosset,_William_Sealy
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To summarize, Gosset noted that pnorm provides too optimistic probability estimates when examin-
ing data coming from ’small-sized’ samples – like these 11 records –, as it often occurs in biology
labs or in medical pilot studies. Let us discuss two possible (and in this case equivalent) method-
ological choice to analyse these data, considering only the difference in yields, or considering the
couples of not-kiln and kiln data.

5.1 One-sample t test
Let us consider the average xm = 33.7 of the Difference between treated (kiln-dried) and not
treated (not kiln-dried) seeds.

> Difference = c(106, -20, 101, -33, 72, -36, 62, 38, -70, 127, 24)
> mean(Difference)

One wants to compare such experimental result xm = 33.7 with the theoretical hypothesis that to
treat or not to treat provide the same effect: this is the so-called null hypothesis, i.e. µ = 0. One
therefore is interested in evaluating the ’distance’ of these two quantities, xm−µ , from a statistical
point of view; that is, to decide if |xm−µ| could be considered a null distance, or not.

> mean(Difference)
> t.test(Difference)$estimate
> t.test(Difference)$null.value

The idea is to exploit the concept of signal to noise ratio, as correctly discussed by Stephen Ziliak
and Deirdre McCloskey in their The Cult of Statistical Significance magistral paper [54]:

t =
xm−µ

s/
√

n

The quantity t is usually called test statistic, and this is a sort of pun, and source of confusion,
in various language of the World: while in English and in Spanish the words ’Statistics’ and
’Estadistica’ means the science, and ’the test statistic’ and ’el estadistico de test’ means the t –
and the word ’statistic’ is a sinonymous of ’summary’ –, in French and in Italian ’Statistique’ and
’Statistica’ do not differ from ’la statistique test’ and ’la statistica test’.
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> (t_statistic = (mean(Difference) - 0) /(sd(Difference)/sqrt(11)))
> t.test(Difference)$statistic

Now, how to interpret such ’noise to signal ratio’ of 1.69? Is it ’close’ or ’far away’ from zero?
Resorting to the normal distribution probability, pnorm, one could compute the area of the two
violet (see Figure 5.1) tails encompassing t’s far away – in absolute value – from 1.69..., which is
about 9.1%, according to (recall paragraph 3.2.1):

> 2 * (1 - pnorm(1.690476))

Figure 5.1: On the left panel, the probability to observe by chance a mean value greater or equal to
xm = 33.7, computed according the normal distribution, is painted in violet and it is approximately
equal to 9%. On the right panel, the probability painted in orange increases to about 12%, according
to the Student t distribution with 10 degrees of freedom: ’tails are heavier when sample size is
small’ .

In his paper [43], William Gosset - Student provides the integral relations to correctly evaluate
such probability; those integrals depends of course on how many free parameters, i.e. degrees of
freedom, possess data: in this example they are 10. So, the probability increases to about 12.2%.

So, we conclude that if the null hypothesis is true (i.e. there is no effect in drying or not the seeds)
then there is a probability of 12.2% that the observed effect xm = 33.7 is simply due to chance. This
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probability is known as the p-value of the test, and quite commonly scientits adopt the ’fideistic’ –
and misinterpreted – rule originally stated by Ronald Fisher:
• p-value < α ≡ 0.05? Reject null hypotheses, there is an effect
• p-value > α ≡ 0.05? Accept null hypotheses, no effect at all

An equivalent method to decide, introduced by the polish mathematician Jeržy Neyman, is to look
to the 95% confidence interval and to verify if µ = 0 belongs, or not, to the interval:

> t.test(Difference)$conf.int

As µ = 0 ∈ [−10.7,78.2], then we accept the null hypotheses and we are lead to decide that the
drying treatment is unuseful. So, now we are able to understand the whole output of the One
Sample t-test:

> t.test(Difference)$method
> t.test(Difference)

R Around the question of ’statistical significance’ p < 0.05 there is a wide and profound
discussion. We will discuss again the topic in section , but to have an initial idea we suggest
reading:

• the Douglas Curran-Everett and Dale J. Benos Guidelines for reporting statistics in
journals published by the American Physiological Society [13]

• the Stephen Ziliak and Deirdre McCloskey The cult of statistical significance [54]
• the Why Most Published Research Findings Are False of John Ioannidis [26], and all

the subsequent debate which led to https://metrics.stanford.edu/
• The ASA’s statement on p-values [49]

https://metrics.stanford.edu/
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5.1.1 Two-sample paired t test
Here we discuss the other proper methodology to decide about kill-drying. Let us refer again to
Table 5.1, considering the 11 couples of paired data Not-Kiln Dried and Kiln-Dried seeds. Check
that the following Two Sample paired t-test is in agreement with what we have just seen in the
One Sample t-test:

> nkd = c(1903, 1935, 1910, 2496, 2108, 1961, 2060, 1444, 1612, 1316, 1511)
> kd = c(2009, 1915, 2011, 2463, 2180, 1925, 2122, 1482, 1542, 1443, 1535)
> t.test(kd, nkd, paired = TRUE)

A paired t-test is a simple but typical statistical procedure exploited in the longitudinal experimental
design (see section 7.4), where (a couple of) repeated measures are collected on the same subject.

5.2 Power of a test
Let us quote Mould’s paragraph 8.4 [34] words:

There are two types of error which can be made in arriving at a decision about the null
hypothesis, H0. A type-I error is to reject H0 when in fact it is true and a type-II error
is to accept H0 when in fact it is false. By convention the probability of a type-I error
is usually denoted by α and the probability of a type-II error by β . (...) The probability
1−β is defined as the power of the test of the hypothesis H0 against an alternative
hypothesis.

By analogy, a judge starts from the hypothesis H0 = ’this defendant is innocent’; the type-I error is
to reject innocence when in fact it is true and to imprison an innocent. And a type-II error is to
accept innocence when in fact it is false, i.e. to release a culprit.

> power.t.test(n = 11, delta = (mean(Difference) - 0),
sd = sd(Difference), sig.level = 0.1218,
power = NULL, type = "one.sample")
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R holds the possibility to estimate 1−β with the above function power.t.test, which depends
on four information linked together: the numerator of the t statistic, xm−µ , and the denominator
which requires estimation of σ and knowledge on sample size n. So, in the particular example of
William Gosset / Student’s barley seeds, the situation is summarized in this table (confront Mould’s
Table 8.2):

Experimental Result

Actual Truth To dry ’works’ To dry ’not works’

To dry ’works’ correct, 1−β = 0.52 wrong, β = 0.48
To dry ’not works’ wrong, α = 0.12 correct, 1−α = 0.88

R The power calculation here shown has only a didactical interest, but is is uneuseful – see John
Hoenig and Dennis Heisey, The Abuse of Power: The Pervasive Fallacy of Power Calculations
for Data Analysis [22].

To estimate power when designing a clinical trial is crucial. For an introductory review on this
topic, see Elise Whitley and Jonathan Ball, Statistics review 4: Sample size calculations, [51]:

https://ccforum.biomedcentral.com/articles/10.1186/cc1521

5.3 Two sample tests
We provide here a brief survey of some classical tests concerning two indipendent samples, fol-
lowing the Michael Crawley comprehensive The R Book [12, pages 289-298]. We are interested
in:
• comparing two variances (Fisher / Snedecor F test, var.test)
• comparing two (unpaired) sample means with normal errors (Student’s t test, t.test)
• comparing two means with non-normal errors (Wilcoxon’s rank test, wilcox.test)
• testing for independence of two variables in a contingency table (chi-squared, chisq.test,

or Fisher’s exact test, fisher.test).

5.3.1 Testing two variances
Let us revise the ovarian cancer roma Shadi Najaf dataset, and observe that the variance of the
biomarker logHE4 differs a lot between the benign (0.12) and malignant (1.60) groups.

> www = "http://www.biostatisticaumg.it/dataset/roma.csv"
> roma = read.csv(www, header = TRUE)
> attach(roma)

https://ccforum.biomedcentral.com/articles/10.1186/cc1521
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> tapply(logHE4, Histology, var)

Therefore we proceed assessing whether those data comes from two distinct populations, differring
in dispersion; this is the goal of the var.test Fisher and Snedecor F test ratio of variances:

> var.test(logHE4 ~ Histology)

The output shows that the ratio of the two variances is 0.074 (i.e. the F = 0.074 statistic), really far
away from 1 (the p-value is practically null, and the 95% confidence interval do not cover 1). Such
computations come from two distinct sample of dimension 171 and 39 (in fact, after estimating two
variances they remain df = 170 and df = 38 degree of freedom). We conclude therefore that the
two samples are different, in a statistical sense: data are heteroskedastic. The game is over, as we
remember Michael Crawley words [12, page 290]:

Because the variances are significantly different, it would be wrong to compare the
two sample means using Student’s t-test.

Remembering also that var.test ’is highly sensitive to outliers’ [12, page 291], one can consider
the non-parametric equivalent Fligner - Killeen test, fligner.test(logHE4 ∼ Histology),
most robust against departures from normality [11]:

5.3.2 Testing two (unpaired) sample means with normal errors
Suppose that we are interested in exploring the role of biomarker logCA19.9 with respect to
Menopause. We start with a little exploratory analysis, observing the boxplot(logCA19.9 ∼
Menopause). The boxes are symmetric, the whiskers are ’short’, not showing evident departure
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from normality, and homoskedasticity is confirmed by var.test(logCA19.9 ∼ Menopause) –
or better by fligner.test(logCA19.9 ∼ Menopause), having considered in the boxplots the
presence of a number of outliers, both in benign and malignant cases. By the way, we recall that
one can also rely on a formal test to decide if data are normally distributed, i.e. the Samuel Shapiro
and Martin Wilk’s test, shapiro.test [12].

So, if we were required to decide whether logCA19.9 levels varies in Menopause, we would
provide a negative answer, according to Two Sample t-test: the two means 2.42 and 2.67 are
so close, and their difference (-0.24, not reported) is the center of the 95% confidence interval
[−0.61,0.12] which covers 0.

Note that the numbers of degrees of freedom is not anymore an integer (df = 177.44), and this is
related to the fact the two groups have different dimensions and we are resorting the proper Welch -
Satterthwaite relation:

https://en.wikipedia.org/wiki/Welch%E2%80%93Satterthwaite_equation

5.3.3 Testing two (unpaired) sample means with non-normal errors

Richard Mould [34] recalls in his Table 11.1 that in order to properly apply the t-test, several
hypotheses have to be fulfilled:

1. The observations must be independent in order to avoid bias
2. The observations must be drawn from normal populations
3. These normal populations must have the same variance (or in special circumstances, a known

ratio of variances)
4. The variables involved must have been measured in an interval scale, so that it is possible to

use arithmetical operations (e.g. add, divide, obtain means) on the values of the variables

Despite the fact that in 1969 Bradley Efron [15] has proved that some mild ’orthant symmetry
condition’ instead of normality and homoskedasticity can be sufficient, suppose to be interested to
confirm the biomarker logHE4 ability in predicting Histology outcome. The boxplot(logHE4
∼ Histology) exhibit a very skewed distribution, with a long whisker, and we are surely doubtful
about normality.
In this case it is proper to resort to the non-parametric Wilcoxon test, which consider data ordered
along their rank [11]. No doubt, here: a so small p-value confirms our expectation.

> wilcox.test(logHE4 ~ Histology)

https://en.wikipedia.org/wiki/Welch%E2%80%93Satterthwaite_equation
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5.3.4 Testing for independence in a 2 by 2 contingency table
In section 3.1, we were discussing about menopausal status as a possible predictor of malig-
nancy in ovarian cancer, and we printed the Table 3.1. Now we try to decide if Histology and
Menopause are independent event, or associated event, intepreting in a statistical – and not purely
mathematical – sense the ’crude’ definition:

P(malignant)≡ P(malignant|post menopausal)

The Pearson’s chi-squared test, chisq.test, is a classical tool, but currently many authors
recommend to exploit the Fisher’s exact test, fisher.test. In any case, again no doubt here:
Histology and Menopause are associated events.

> thm = table(Histology, Menopause)
> chisq.test(thm)
> fisher.test(thm)

5.4 Significance: statistical or clinical?
We try to clarify the point with an example. Suppose that we want to assess the role of the
carbohydrate antigen 19-9, logCA19.9, as a predictor of the ovarian cancer. There is no doubt
about its statistical significance, the t-test exhibit a smashing p-value = 0.004:
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Nevertheless, a simple boxplot enlighten the fact that although CA19-9 may be ’significant’ it is
not ’useful’, i.e. clinically significant in detecting ovarian pathology. Suppose for instance that a
woman with symptoms has logCA19.9 = 3.0. Of course, such a value is closer to the malignant
group mean 3.2 than to the benign group mean 2.4, but basing on the 3.0 information to guess
histology is nothing more than looking into a crystal ball:

Let us in conclusion read what Richard Mould claims in his 8.3.2 paragraph [34]:

One of the problems encountered by those involved with statistics is how, and with
what accuracy, inferences can be drawn about the nature of a population when the
only evidence which exists is that from samples of the population. In order to solve
this problem an understanding of statistical significance is essential and it should be
immediately recognised that this is not necessarily the same as clinical significance
when the statistics refer to medicine. (...) It is an absolute priority for those using tests
for statistical significance that they understand the conditions which must apply for a
particular test to be valid and that they have a clear understanding of the hypotheses
which are being tested.
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6. The linear model

6.1 Overview
In this Chapter we introduce a modern and powerful statistical tool widely used in the cross-sectional
studies: the linear model. Typically, in the statistical textbooks, this argument is introduced talking
about the sir Francis Galton regression ’towards mediocrity’ line ’in hereditary stature’ [21], and
at a first sight the two arguments perfectly overlap. We are going here to show that the linear model
encompasses a variety of important and classical statistical tools, as the Anova, or the Ancova; or
even the t-test.

Consider in fact the fresher cross-section dataset, relative to a cohort of medicine and surgery
first year Trieste university students: the command str(fresher) discloses that they are 65,
and we collected their gender (a factor variable with f and m levels), their height, weight and
shoesize (numeric variables), along with their smoke habits (a factor with levels no and yes),
and their gym physical activity (classified as a three level alphabetically ordered factor not <
occasional < sporty).
Suppose we are interested in assessing differences in weight with respect to the gender of our
students. Assuming by hypothesis that we can exploit the gaussian normal framework, both
var.test and fligner.test confirm an homoskedastic situation, so we resort to the proper
Welch/Student t-test:

t.test(weight ~ gender, var.equal = TRUE)

The figure of the next page provides the familiar, usual, output: females have a 56.6 Kg mean
weight, while male on average are heavier, 70.2 Kg; such a difference is statistically significant,
with a p-value 2.627e-11 very close to zero, as computed on the t = 8.076 statistic on 63 degree
of freedom. But, look what happens if instead of typing t.test we exploit the lm linear model R
command, and we ask for its summary:

summary(lm(weight ~ gender))
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Comparing the two images above, we note that the summary last lines offer the same p-value of the
t-test, and the 63 degrees of freedom as well. Also the t statistic 8.076 is reported (with a change
of sign in the latter) in a column denoted t value, but there are lots of further information in the
second output, and the next sections are devoted to clarify most of them.

6.2 The regression line

Suppose we are interested in assessing the possible relation that interlaces fresher’s weights with
their heights. It is a relation between two numeric variables, and we stress the role that height
assumes as a possible predictor of (i.e. a dataset covariate significantly associated to) the weight.
In this sense, we pose the following:

> relation = weight ~ height

This position implies that height represents the input, the independent variable located on the
abscissa x, while weight is thought to be the output, the dependent variable located on the ordinate
y. Always remember that a statistical relation is not a cause-effect relation at all. Just for fun,
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look to the http://www.tylervigen.com/spurious-correlations in which for instance the
divorce rate in Maine is put in relation with consumption of margarine. More seriously, remember
that:

The objective (.. ) is to show that a relationship exists between these two variables,
so that having demonstrated the existence of this relationship, it can be used within
some theoretical framework. Blind use of regression formulae, just because they exist,
can be very misleading. If Y = a cause and X = an effect, one must be careful not to
draw too many conclusions if there may be several other possible causes. Cause and
effect in medicine are seldom so simple as to be explained by a single straight line. (R.
Mould [34], section 16.1)

When looking for a regression line y = a+b ·x we need to precise how to choose the intercept a and
the slope b, in a way that the line crosses the point cloud in the ’best possible way’. This can always
be achieved as demonstrated in the Gauss - Markov theorem (e.g. [17, page 18]): the regression
line is the Best Linear Unbiased Estimate (’BLUE’) according to the Ordinary Least Square (OLS)
estimation, a method explored since 1755 by the dalmatian Ruggero Boscovich / Rud̄er Bošković
[42]. Simply, one consider all the residuals (one of them is the violet segment in the above figure)
and, likewise in the Pythagorean theorem, one consider the sum of the squared residuals (i.e the
sum of the squared ’vertical’ distances from each cloud point (xi,yi) and its vertical projection of
the line, i.e. the point (xi,a+b ·xi)). In other words, the residuals are defined as εi = yi− (a+b ·xi)
and defining the vector ε = (ε1,ε2, . . . ,εi, . . . ,εn) one computes the scalar product εT · ε ≡< ε|ε >
and search the parameters a and b which minimize such scalar product.

R On the web there are very nice pages showing this:
• https://setosa.io/
• https://seeing-theory.brown.edu

It is easy to calculate such a =−83.89 and b = 0.85 with R:

> model = lm(relation)
> model

http://www.tylervigen.com/spurious-correlations
https://setosa.io/
https://seeing-theory.brown.edu
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After having discovered a and b, which represent the fixed effects of the linear model, we have to
describe also the stochastic component of the linear model, or random effect. The theory requires
in fact that residuals εi have to be independent and normally distributed, with zero mean, and with
a constant standard deviation σ (remember section 5.3.3). To estimate that σ = 6.46, we can type:

> summary(model)$sigma

Now, a question: how to be ’statistically sure’ that the weight increases with height? In other
words, how to be ’statistically sure’ that the b = 0.85 differs from zero and the regression line is not
nearly horizontal? This question is similar to that exposed in the ’signal to noise ratio’ of Section
5.1; we look to the coefficients in the summary:

> summary(model)$coefficient

If we use the t = xm−µ

s/
√

n relation, we obtain exactly the statistic t = 0.85392−0
0.09649 = 8.849... . Being more

than 8 deviates far away from 0, we are sure (i.e. p value 1.18e-12 < 0.001) that the line has a not
null slope, i.e. that weight is predicted by height.

Exercise 6.1 Check the meaning of a horizontal regression line. Generate 100 normally
distributed random points x, and generate other 100 normally distributed random points y with a
certain off-set, say 13:

> x = rnorm(100)
> y = rnorm(100) + 13

Of course, we are not able to predict y knowing x: they are random. Check that computing the
summary of the lm linear model applied to the formula = y ∼ x the slope of the regression
line is not significant and close to zero; and in the plot the regression line is horizontal, which
is the peculiarity of uncorrelated data.

> formula = y ~ x
> model = lm(formula)
> summary(model)
> plot(x,y)
> abline(model)
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�

Exercise 6.2 Think a simple way to check that the regression line y = a+bx passes through
the mass center of the point cloud, i.e. the point (mean(height), mean(weight)). �

6.2.1 Understanding random effect
Let us explain better the concept of the stochastic component of the linear model, as measured
in the summary(model) by the residual standard error. The regression line is a statistical
model which conveys three parameters – and a fourth parameter taken for granted: two of them are
the fixed effects a and b, the intercept and the slope of the line. The ’taken for granted’ parameter is
the null mean of the residuals, that is the normal distribution N(µ,σ) describing the residuals is
always of the form N(0,σ). Lastly, the third parameter is the standard deviation σ quantifying the
dispersion of the sampled residuals along the null mean (remember the standard error of the mean
in Section 4.1).
In our example, the summary(model)$sigma provides the σ = 6.46 estimate. Now look to the
below picture: in the left panel, the true weight vs. height; the right panel instead shows a plot of
65 fictitious weights random generated, according to the estimated regression line perturbed by
a randerror normally distributed with null mean and 6.46 standard deviation.

> set.seed(4321) # for reproducibility
> randerror = rnorm(65, 0, 6.46)
> fictitious = -83.891 + 0.854 * height + randerror
> par(mfrow = c(1,2))
> plot(height, weight)
> plot(height, fictitious)

The fact that two panels resemble each other suggests that our linear model is well posed. We will
discuss better this issue in the following chapters.

6.2.2 Measuring point cloud disorder
The (positive) slope b = 0.85 is also a ’proxy’ measure of the (positive) correlation which inter-
venes between height and weight. But b = 0.85 do not indicate whether the points in the cloud
are more or less ’adherent’, ’snug-fitting’ to the line: we need a way to measure the ’disorder’
around the regression line caused by that unruly cloud. Being b a slope, i.e. a quantity of the type
∆y/∆x, it is natural to multiply it by a quantity ∆x/∆y to obtain a pure number; in fact:
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ρ = b · σx

σy

is defined as the (linear) Auguste Bravais - Karl Pearson correlation coefficient (also called the
product - moment correlation coefficient). In our example, ρ = 0.74:

> cor.test(height, weight)
> b = summary(model)$coefficient[2]
> b * sd(height) / sd(weight)

The squared value of the correlation coefficient, ρ2, is called coefficient of determination, usually
noted as R2

> cor(height, weight)^2 ## 0.554184
> summary(model)$r.squared ## 0.554184

The notion of coefficient of determination is linked to that of Kullback - Leibler information
measure, which happens to be the negative of Boltzmann’s entropy [9]:

> install.packages("rsq")
> library(rsq)
> rsq.kl(model) ## 0.554184

All these ideas are related to the statistical concept of model deviance, which in the linear model is
nothing but the pythagorean sum of the squared residuals:

> sum(summary(model)$residuals^2)
> deviance(model)

In our example, the model deviance is 2628.63. One can check that assuming that there is not
any predictor to weight, i.e. considering the null model, lm(weight ∼ 1) – which is indeed the
mean and the standard deviation of weight – and computing its deviance, 5896.22, one can again
obtain the R2 determination coefficient, as one minus the deviances’ ratio:

> nullmodel = lm(weight ~ 1)
> sum(summary(nullmodel)$residuals^2)
> deviance(nullmodel)
> 1 - deviance(model)/deviance(nullmodel)
> summary(model)$r.squared
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6.2.3 The diagnostic plots

In a remarkable 1973 paper [5], Francis Anscombe exhibited four artificial datasets, indeed very
different one another, but characterized to have the same regression lines and the same R2 determi-
nation coefficients. You can import them in R with the syntax attach(anscombe) and check what
plotted on Wikipedia: https://en.wikipedia.org/wiki/Anscombe%27s_quartet

We therefore need some tools to judge the ’quality’ of our model, to decide if our linear model
fits well data, or not. This can be done by means of the so-called diagnostic plots, a group of
four panels enlightening the linear model mathematical hypotheses fulfillment. Michaael Crawley
[12, page 357] explains how to understand these plots very well the details; we quote professor
Crawley’s words, adapting them to our case. The first two graphs are the most important. First,
you get a plot of the residuals against the fitted values (above left plot) which do not shows a very
pronounced curvature. Remember, this plot should look like the sky at night, with no pattern of
any sort. Second, you get a QQ plot as introduced in Subsection 3.2.1, which do not indicate
pronounced non-normality in the residuals (the line is straight, not banana-shaped or humped).

The third graph is like a positive-valued version of the first graph; it would good for detecting
non-constancy of variance (heteroscedasticity), if showing up as a triangular scatter (like a wedge
of cheese). The fourth graph shows a pronounced pattern in the standardized residuals as a function

https://en.wikipedia.org/wiki/Anscombe%27s_quartet
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of the leverage. The graph also shows Cook’s distance, which combine leverage and residuals in a
single measure, highlighting the identity of particularly influential data points, which – if present –
appear as isolated numbered points outside some red hyperbolas.

R To discuss further aspect of diagnostic plots have a look to the .pdf Data Quality Assessment
Statistical Methods for Practitioners provided by EPA (on https://nepis.epa.gov, or
simply on Google)

Exercise 6.3 Check that in the anscombe dataset, the third example exhibit a relevant isolated
point. Check in particular that in the diagnostic plots, most of the residuals are negative with a
constant drift, and the positive residuals are concentrated on the left. This suggests systematic
inadequacy in the structure of the model. Moreover, the fourth graph shows a pronounced
pattern in the standardized residuals as a function of the leverage, enlightening the role of the
3rd record.

> attach(anscombe)
> m3 = lm(y3 ~ x3)
> par(mfrow = c(2,2))
> plot(m3)

�

Exercise 6.4 Check that in the airquality dataset, it is not sufficient to model Ozone’s level
in function only of Temperature. Check in particular that you get a plot of the residuals against
the fitted values (above left plot) which shows very pronounced curvature; most of the positive
residuals are on the left and on the right, while the negatives one are concentrated in the central
part of the plot. This suggests systematic inadequacy in the structure of the model, which can be
improved considering maybe a log-transform of Ozone, or a quadratic term for Temperature.

> attach(airquality)
> relationwrong = Ozone ~ Temp
> wrongmodel = lm(relationwrong)
> par(mfrow = c(2,2))
> plot(wrongmodel)

�

Exercise 6.5 In Section 6.3 we approached the t-test as a particular case of linear model. Check
that in the fresher dataset, the t-test was ’proper’ to assess differences in weight vs. gender:
residuals appears to be normally distributed in the QQ plot.

> relation2 = weight ~ gender
> discovermodel = lm(relation2)
> par(mfrow = c(2,2))
> plot(discovermodel)

�

Let us summarise the question raised in Section 3.2.1 where we introduced the misleading sentences
concerning the sum of normal variables. Check that in the fresher dataset, the t-test can be
considered ’proper’ to assess differences in weight vs. gender: residuals appears to be quite

https://nepis.epa.gov
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normally distributed in the Q-Q plot. But ’the sum’ of two normals is not ’normal’, as it appears in
the bimodal histogram of the weight:

> hist(weight)

6.3 The Ancova
In the previous sections and 6.2 we have observed that in the fresher dataset the weight can
be predicted, in a statistical sense, by gender and by height. The question now is: how can we
’melt’ together those two predictors performing a multivariate (or, better to say, multivariable)
regression? The classical approach to this question is known with the term Ancova, which stands
for ’analysis of covariance’.

Start exploring what happens with the command split(weight, gender). As you see, the
65 weights are splitted into two groups, the first belonging to the girls, the other to the boys.
So, one viable idea could be to split also the heights according to gender, and to study the two
separate regression lines, one for the girls, one for the boys. Here you have one possible R code:

> weightf = split(weight, gender)$f
> weightm = split(weight, gender)$m
> heightf = split(height, gender)$f
> heightm = split(height, gender)$m
> plot(height, weight, col = "white")
> points(heightf, weightf, col = "orange", pch = 19)
> abline(lm(weightf~ heightf), col = "orange")
> points(heightm, weightm, col = "violet", bg = "violet", pch = 22)
> abline(lm(weightm ~ heightm), col = "violet", lty = 2, lwd = 2)

Figure 6.1: An example of Ancova: females and males are respectively painted in orange, y =
−18.50+0.45 · x, and violet, y =−44.47+0.64 · x. The natural question arising is: do the orange
regression line differ, in statistical sense, from the violet line by slope, by intercept, or both?

We have a very compact and elegant way to analyse such a situation in terms of linear models.
The only point to focus is the ’strange’ Wilkinson and Rogers notation adopted to describe the
statistical relations; when we want to investigate on weight versus height relation, imagining that
gender may influence (or better, interact with) that relation, we adopt the cross operator, *, and we
talk of Ancova with interaction analysis:
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> ancovarelation01 = weight ~ height * gender
> ancovamodel01 = lm(ancovarelation01)
> ancovamodel01

Now we can interpret that output, recognising the equations of the orange and violet regression
lines in Figure 6.1: the females (according to the R alphabetical order) have Intercept -18.50
and slope 0.45, i.e. y =−18.50+0.45 · x. The last two terms (i.e. genderm and – according to the
’strange’ Wilkinson and Rogers notation – height:genderm) modify the coefficients of the girls
regression line, in an additive way; therefore, for males, Intercept is -18.50 - 25.96 and slope is
0.45 + 0.19 , i.e. y =−44.47+0.64 · x.

But there is another possibility to consider, which is known as the Ancova without interaction,
which can be called using the plus operator, +:

> ancovarelation02 = weight ~ height + gender
> ancovamodel02 = lm(ancovarelation02)
> ancovamodel02

The output not reported shows only three parameters, and not four as in the previous model: the
females have Intercept -35.37 and slope 0.55, i.e. y = −35.37+ 0.55 · x, while the last term
genderm is an offset for the males Intercept, i.e. -35.37 + 7.20, y = −28.18+ 0.55 · x. In this
model, gender has an effect in moving up or down the regression line, but not in changing its slope:
that’s the reason why we see two parallel lines.

Of course, we urge to define a criterion in order to decide whether ancovarelation01 or
ancovarelation02 is the ’best’ statistical relation to explain that point cloud. One possible
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choice is to investigate on the deviances of the two linear models, as explained in previous section
6.2.2. In such a case, R has the (badly named, if I might say) analysis of deviance anova()
function, which performs an F test similar to var.test. Anyway, many authors [3, 16] manteins
that there are convincing reasons to avoid such an approach: the best thing to do is to adopt the
Akaike Information Criterion, as we are going to see.

6.3.1 The Akaike Information Criterion

In Section 6.2.2 we tried to measure the disorder in a point cloud, exploiting the concept of deviance,
which in turn is related to that of residuals. And we remember that those residuals have to be
independent and normally distributed, with null mean and some constant standard deviation. There,
we also evaluated that standard deviation σ = 6.64 with these commands:

> relation = weight ~ height
> model = lm(relation)
> sigmamodel = summary(model)$sigma
> sigmamodel

But actually, the proper standard deviation to consider in the present case is the maximum likelihood
estimate [32], which takes in account the fact that the 65 original heights of the students had
already provided 2 information (i.e. the intercept and the slope of the regression line) and then we
have only 63 free information to exploit. The result is σML = 6.36:

> sigmaMLmodel = sigmamodel * sqrt((65-2)/65)
> sigmaMLmodel

Now we use the notion of independence: can we evaluate the probability, or better the likelihood,
to observe by chance exactly these residuals? The independence guarantees that we can multiply
the single probability, concentrated on each residual thought to be a random event. But multiplying
65 probabilities yield a result very close to zero; this is the reason why usually one passes to the
logarithms, in order to transform products of probabilities into their sums:

> sum(log(dnorm(resid(model), mean = 0, sd = sigmaMLmodel)))

The quantity here obtained, -212.48, is defined to be the log-likelihood of the model, and it can be
calculated by the command:

> logLik(model)

And now, the great intuition of professor Hirotsugu Akaike[2]: to penalize the log-likelihood of the
model with the ’cost’ of the total parameter used (in our example, 2 fixed effects + 1 random effect
= 3), in agreement to the Kullback - Leibler theoretical framework [10, pages 28-30]. Here we have
the Akaike information criterion:

> 2 * ( 3 - logLik(model) )
> AIC(model)

Now we have a reliable tool to select the proper model in the cross-section studies datasets. Let us
see how this stuff works.
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6.3.2 The Model Selection
We follow professor Michael Crawley’s crystal clear words [12, page 353]:

The more parameters that there are in the model, the better the fit. You could obtain
a perfect fit if you had a separate parameter for every data point, but this model would
have absolutely no explanatory power. There is always going to be a trade-off between
the goodness of fit and the number of parameters required by parsimony. AIC is useful
because it explicitly penalizes any superfluous parameters in the model, by adding
2(p+1) to the deviance.
When comparing two models, the smaller the AIC, the better the fit.

Let us return to the unsolved question of section 6.3: we have to decide if it is proper to adopt the
ancovamodel01 which ’costs’ four fixed effects (two slopes and two intercepts), or the ’less expen-
sive’ ancovamodel02 with a common slope is sufficient. We compute their Akaike Information
Criteria:

AIC(ancovamodel01)
AIC(ancovamodel02)

We are done. We will completely appreciate the efficacy of this method in the next two topics,
devoted to the Anova and to the binomial regression.

6.4 The Anova
Recall that t-test is able to detect differences in means between two groups, as its test statistic is
defined as:

t =
m1−m2√

s2
1

n1
+

s2
2

n2

Having to treat for instance three groups, it would be easy to modify the denominator,
√

s2
1

n1
+

s2
2

n2
+

s2
3

n3
.

But the numerator would be undefined: m1−m2−m3? m1 +m2−m3? m1−m2 +m3? And so on.
It is possible to overcome this difficulty observing that when differences in mean are present,
also the data dispersions, i.e. the variances, decrease. We know that gender is a predictor of
weight, and we see (Figure 6.2 above left panel) that the weight variances of girls and boys are,
respectively, 41.1 and 50.7: a great reduction with respect to the 92.1 variance of the whole weight
data. On the contrary (Figure 6.2 above right panel), there is not any significant difference in mean
of weight according to smoke (p-value = 0.52); and splitting the weight into the two groups of
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smokers (σ2 = 106.4) and not smokers (σ2 = 89.4) do not sensibly reduce the 92.2 variance. And
this is the reason why Anova (= An.o.va., Analysis of Variance) is an indirect way to discover
differences between means.

> t.test(weight ~ gender)$p.value
> t.test(weight ~ smoke)$p.value
> tapply(weight, gender, var)
> tapply(weight, smoke, var)
> var(weight)

Now, if you like the horror movies, go on reading the next subsection 6.4.1. But if you love the
k.i.s.s. (i.e. keep it simple, stupid!), proceed without doubts to the subsection 6.4.2

Figure 6.2: In the above left panel, gender is a predictor of weight. On the right, smoke is not a
predictor of weight: the boxes are wider than those in the left panel - the variance has not reduced,
and therefore there is no difference in mean. In the below left panel, fresher’s weight of not
gymming differs from the others two levels, which are equivalent in statistical sense. In the below
right panel, despite a strong heteroskedastic situation, mutated patients have a different gengival
areainflamation that heterozygotes or wild-type patients, the latter two levels not differing each
other.
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6.4.1 The old-fashioned approach
The classical approach to the one-way Anova analysis in R – i.e. one numeric response and one
factor covariate – exploits the aov command; let us check its ’poor’ output in a case that we know
very well since the 6.3 section: the t-test.

> relation = weight ~ gender
> oldfashioned = aov(relation)
> summary(oldfashioned)
> oldfashioned

The calculation performed are similar when F-testing two variances, as in subsection 5.3.1, being
the variance splitted to compute the deviance as shown in subsection 6.2.2:

> var(weight)*(length(weight)-1)-deviance(anovamodel)
> deviance(anovamodel)

But the summary reports only that there is a significant difference (p-value 1.18e-12), that
the normally distributed residuals have dispersion σ = 6.46 and that ’Estimated effects may be
unbalanced’ in the sense that the dimensions of the two group do not coincide. The summary of the
lm command was much more complete.
This lack of information in particular penalizes the analysis when we try to predict weight in
function of gym, a three level (Figure 6.2 below left panel) alphabetically ordered factor: not,
occasional, sporty.

> relation3 = weight ~ gym
> anovamodel = aov(relation3)
> summary(anovamodel)

We can discover only that p-value = 0.003, so that gym has a statistically significant effect on
weight, and stop! But at least two open questions remain, discussed in the next two paragraph.

1. The mathematical hypotheses of the Anova
Vijay Rohatgi [37] correctly states that:

Let X11,X12, ...,X1n1 ,X21,X22, ...,X2n2 and X31,X32, ...,X3n3 be independent random sam-
ples from three normal populations with respective parameters µ1 and σ2

1 , µ2 and σ2
2 and µ3

and σ2
3 . Suppose σ1 = σ2 = σ3. ...
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Therefore if one wants to perform an Anova according the traditional way, it is required to check
whether in weight:

1. all three groups not, occasional, sporty are normally distributed (by means of qqnorm or
shapiro.test)

2. their dispersions are homoskedastic, i.e. in statistical sense σ1 = σ2 = σ3.

To check for differences in dispersion when groups are mode than two one can use the Maurice
Bartlett’s test, bartlett.test(weight ∼ gym), but this test is very sensitive to outliers or
to normality violations, and therefore many scientists prefer to use the Howard Levene’s test,
leveneTest(areainfl, il1b) (but you are required to download and install in advance the
package car).

1.1 How to mend not-normality
In presence of not normality, [46], [12], often it is exploited the George Box and sir David Cox
transformation:

> library(MASS)
> boxcox(anovamodel)

The parabola depicted is the log-likelihood [16, 46] of the model, varying over the transformation
of weight powered to an exponent λ . The graph suggest in this case to adopt (approximatively) an
exponent 1/4 (i.e. to perform an Anova on weightboxcox = sqrt(sqrt(weight)))

1.2 How to mend heteroskedasticity
If we want to test differences in means exploiting reduction on variances, but the variances are
very different (Figure 6.2 below right panel), we are in deep trouble. Consider in fact the Sara De
Iudicibus [14] tooth dataset, in which the three group patients (heterozygous, mutated, wild-type)
according the Interleukin-1 beta (IL-1β ) – a cytokine mediating inflammatory response – are related
to the gingival inflammation area (areainfl) measured on a digital image. While the variance of
areainfl is σ = 205.3, splitting it according to il1b yields for etero, mut and wt respectively
88.5, 127.2 and 294.1. This trouble heavily affects the following question of multiple comparisons.

> www = "http://www.biostatisticaumg.it/dataset/tooth.csv"
> tooth = read.csv( www, header = TRUE )
> var(tooth$areainfl)
> tapply(tooth$areainfl, tooth$il1b, var)

2. The multiple comparison issue
We see that in relation3, i.e. weight versus gym, the Anova p-value is significant. But such a
p-value do not disclose which group is different from the other (spoiler alert: in Figure 6.2 the
solution is revealed by the violet colour). Richard Mould’s words in his chapter 17.1 [34] are clear:

With more than two means it is of course technically possible to make multiple
t-tests on all possible pairs of means, but making multiple tests increases the probability
of making a type I error.

In fact, suppose to choose an α level of 5%; then, the probability to commit an error of the fisrt
type is about the 14% (independent events, product of probabilities):

1− (1− 5
100

) · (1− 5
100

) · (1− 5
100

) = 1− (1− 5
100

)3 = 0.143

One ’radical’ solution is to exploit the Bernoulli inequality 1+nh < (1+h)n, i.e. if we have n = 3
groups and therefore n · (n−1)/2 = 3 comparisons, then one fix h = α/3, i.e. α = 0.05/3 = 0.017.
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This is the famous Carlo Bonferroni correction[35] . Here, not gym versus sporty has a p-value
= 0.08.

> weightboxcox = sqrt(sqrt(weight))
> pairwise.t.test(weightboxcox, gym, p.adj="bonferroni")

One milder and elegant approach is to trust in John Tukey and adopt his Honest Significant
Differences multiple comparison test[12]:

> TukeyHSD(anovamodel)

Here, not gym versus sporty has a p-value = 0.060. As you see, everything appears to be shaky
and slippery. And when the situation is heteroskedastic, the things are even worse.

2.1 How to mend heteroskedasticity - conclusion
Let us go back to the tooth question. We need to install two packages, sandwich [53] and
multcomp [23], as magistrally explained in the Multiple comparisons using R by Bretz, Hothorn
and Westfall [8]. We shall use the glht general linear hypotheses test. In this way, one discover
that hetero versus mut has p-value = 0.024.

> library(multcomp)
> library(sandwich)
> posthoc = glht(anovamodel, linfct = mcp(gym = "Tukey"), vcov = sandwich)
> summary(posthoc)

Again, everything do not appear simple at a first glance. We hope to have convinced readers to skip
all this stuff, and to proceed to the following simpler approach.

6.4.2 The Anova with AIC Model Selection
Let us recap: we try to predict weight in function of gym, a three level (Figure 6.2 below left panel)
alphabetically ordered factor: not, occasional, sporty. We set the linear model and evaluate its
Akaike Information Criterion, which is equal to 473.1

> relation3 = weight ~ gym
> linearmodel = lm(relation3)
> AIC(linearmodel) ## 473.1

Now (the ’multiple comparisons issue’) we have to decide if linearmodel is the minimal adequate
model and all the three different levels provide different information; or some levels can be joined
together. Let us make some attempts, ’melting’ together the gym factor levels in all the possible two
by two manners, as shown in Table 6.1.

> gymNO = gym
> levels(gymNO)[1] = "notoccasional"
> levels(gymNO)[2] = "notoccasional"
> gymNS = gym
> levels(gymNS)[1] = "notsporty"
> levels(gymNS)[3] = "notsporty"
> gymOS = gym
> levels(gymOS)[2] = "occasionalsporty"
> levels(gymOS)[3] = "occasionalsporty"
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weight gym gymNO gymNS gymOS

53 not notoccasional notsporty not
58 not notoccasional notsporty not
50 occasional notoccasional occasional occasionalsporty
49 occasional notoccasional occasional occasionalsporty
73 sporty sporty notsporty occasionalsporty
79 sporty sporty notsporty occasionalsporty

Table 6.1: Example of six freshers whose gym activity has been re-grouped in a two by two
manner.

To be clear, this can be thought as a procedure which ’glues’ to the dataset three new columns,
gymNO, gymNS and gymOS; and all the new columns instead of having three levels has only two of
them – see Table 6.1.

Now, it is sufficient to compute the Akaike Information Criterion for all these new linear models,
and to choose the smaller. And Bob’s your uncle!

> AIC(lm(weight ~ gymNO))
> AIC(lm(weight ~ gymNS))
> AIC(lm(weight ~ gymOS))

We observe that the latter linear model, weight versus gymOS, has the lowest AIC = 472.7. There-
fore it can be choosen as the minimal adequate model, and we interpret this saying that, in the
fresher dataset, those who not practice gym has a weight significantly different from those who
practice it in an occasional manner, or those who are sporty; and the latter two conditions do
not differ between them (now, check again the orange/brown boxplots in the below left panel of
Figure 6.2).

Exercise 6.6 Do you remember iris dataset? Decide whether Sepal.Width differs between
Species by means. �





7. The generalized linear models

7.1 Overview

Biostatisticians often are consulted by Biologists or Physicians when seeking for reliable oncological
biomarkers. In such a case, the typical response comes from a retrospective cross-section dataset
whose response is of binomial type (benign/malignant, positive/negative, alive/dead, ...). You
remember that in section 3.1 we introduced the Shadi Najaf roma dataset, in which 210 patients
with a known Histology response (benign or malignant) were studied in association to four
candidate biomarkers (logaritmic transformed) – logHE4, logCA125, logCA19.9 and logCEA –,
along with their AgePatients and their Menopause status:

> www = "http://www.biostatisticaumg.it/dataset/roma.csv"
> roma = read.csv(www, header = TRUE)
> attach(roma)
> head(roma)
> tail(roma)

As explained in subsection 3.2.3, the Histology response is not a numeric variable, but a factor
response, mathematically modelled by a binomial random variable as discussed in subsection 3.2.3.
Therefore, the lm machinery can not work at all:
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The same problems occur for instance when we have a count response, as described in the Poisson
random variable 3.2.4 subsection. In these situations we exploit the generalized linear models
theory.
Vocabulary 7.1 — Generalized linear model. A generalized linear model is a set of three
statistical tools composed by:

1. a relation, named the linear predictor, between the dataset response and one or more dataset
covariates (as seen in previous chapter 6).

2. a (family of) random variable able to model the response (or, to say better, to model the
residuals)

3. a link function which transforms (’injects’) the expected value of the random variable
modelling the response into the mean of the linear predictor.

In the roma dataset a possible relation to investigate is suggested by Moore et al. [33]:

moorerelation = Histology ~ Menopause + logHE4 + logCA125

In the following section we will discuss step by step all the details of the powerful and comprehen-
sive R glm function.

7.2 From the maximal model to the minimal adequate model
To start, it is clear the in the sequel we will concern with the family = binomial of random
variables, having to model the Histology. So, we have set the first of the three ingredients of our
seeked generalized linear model. A priori, we do not know which are the Histology predictors,
i.e. the statistically significant covariates within the roma dataset. We start to explore the maximal
additive model, in which all the covariates are present:

> maximalrelation = Histology ~ logHE4 + logCA125 + logCA19.9 + logCEA
+ AgePatient + Menopause

Having set the maximalrelation we compute the maximal additive model with the glm command,
specifying the family = binomial of Histology response:

> maximalmodel = glm(maximalrelation, family = binomial)
> summary(maximalmodel)

The summary is, as always, very complete; but we immediately recognize that there are some
covariates ’full of stars’, and other not. Our next goal is to throw away uneuseful variables; we
exploit the step function, which analyse the AIC criteria when inside a model a single covariate is
dropped away, halting when a minimum AIC occurs (the convexity of AIC guarantees the success):

> step(maximalmodel)

After a while, a very long output will be provided. The last lines provide the clue – the moorerelation
seems to be the right one:
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Now we explain how to use those Coefficients, taking as an example the 210-th dataset patient:

Substituting the patient information into the model we evaluate the relation, obtaining what
sometimes it is called a predictive index, PI:

P.I.=−14.3770+2.3382 ·3.96+0.6845 ·4.03+0.9378≈−1.42

Now it is the turn of the third ingredient of the generalized linear models, the link function, which
transform the P.I. = −1.42 into an evaluation of probability. The standard choice is the famous
logit transformation, a bijective map from p ∈ [0,1] into y ∈ R:

y(p) = logit(p)≡ log(
p

1− p
)

Thinking y(p) to be the P.I. result, it is sufficient to compute the inverse function of the logit to
obtain the probability p. This is the famous sigmoidal function from P.I. ∈ R into p(P.I.) ∈ [0,1]
known as the logistic function (and this is the reason why often the binomial distributed generalized
linear model is called logistic regression):

p =
eP.I.

1+ eP.I.

In the present example, the 210-th patient had an estimated probability of being malignant
p = eP.I.

1+eP.I. =
e−1.42

1+e−1.42 = 0.19 (remember, R adopts the alphabetical order, therefore in the binomial
(correctly, Bernoulli) random variable Histology benign is 0 and malignant is 1).

Exercise 7.1 Try to write two functions in R, say probante and probpost, to evaluate the
probability of malignancy knowing as input the logHE4 and logCA125 values, respectively for
a woman in ante or post menopausal status. �

7.3 Model checking
The first thing to check in the moorerelation, which is purely additive, is that there is not
interaction between the predictors. We make three attempt, and we confront their AIC to the
mooremodel AIC:

> attempt1 = Histology ~ Menopause * logHE4 + logCA125
> AIC(glm(attempt1, family = binomial))
> attempt2 = Histology ~ Menopause * logCA125 + logHE4
> AIC(glm(attempt2, family = binomial))
> attempt3 = Histology ~ Menopause + logHE4 * logCA125
> AIC(glm(attempt3, family = binomial))
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> mooremodel = glm(moorerelation, family = binomial)
> AIC(mooremodel)

These three models respectively have AIC = 115.9, 116.7 and 116.4, while mooremodel maintains
the lowest AIC = 115.3. Therefore we decide not to consider any interaction within predictors.
Another thing to check is the possible presence of curvature in the predictors. This can be done
inserting in the linear predictor a squared term, according the following syntax:

> attempt4 = Histology ~ Menopause + logHE4 + logCA125 + I(logCA125^2)
> summary(glm(attempt4, family = binomial))
> AIC(glm(attempt4, family = binomial)) # 116.9
> attempt5 = Histology ~ Menopause + logHE4 + I(logHE4^2) + logCA125
> summary(glm(attempt5, family = binomial))
> AIC(glm(attempt5, family = binomial)) # 117.1

Let us give now a closer look to the last lines of summary(mooremodel):

To compute the deviance into a glm is not an algebraic straightforward task, but an iterative method
is adopted: to maximize the likelihood on the model according to the Newton-Raphson’s derivative
method [16]. This is what is called the Fisher Scoring procedure.

Another possible issue in estimating glm’s is the phenomenon of overdispersion; remember that
the normal distribution dnorm depends on two ’free’ parameters, the mean µ and the standard
deviation σ . On the contrary, in dbinom (mean = n · p ≡ variance/(1− p)) and dpois (mean =
λ ≡ variance) variance and mean are algebraically related in a fixed manner: as a consequence
the residual deviance has an implicit relation with the dimension n of the dataset, and therefore
with the degrees of freedom of the model. In our example, the 107.26 residual deviance is less than
the 206 degrees of freedom: good news, no overdispersion. On the contrary, when in the model
summary you detect overdispersion, i.e. residual deviance > degrees of freedom, you can act in the
glm call invoking family = quasibinomial. The result will be a computation of a dispersion
parameter different from 1.

Also in the glm it is possible to make some dignostic, by means of the commands residuals and
influence; we recommend reading the milestone-book of Julian Faraway [16].

7.4 Conclusions
Time has gone and our course has ended. But many other important topics are covered into
Richard Mould’s textbook [34]. For instance, his Chapter 14 is devoted to survival analysis and to
Kaplan-Meier estimators. If you prefer, you can have a look to those general introductory surveys:
• https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3071962/
• https://ccforum.biomedcentral.com/articles/10.1186/cc2955

There are also many tutorials on the web devoted to survival analysis performed with R. For
instance:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3071962/
https://ccforum.biomedcentral.com/articles/10.1186/cc2955
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• https://www.datacamp.com/community/tutorials/survival-analysis-R
• https://www.emilyzabor.com/tutorials/survival_analysis_in_r_tutorial.html
• https://www.r-bloggers.com/steps-to-perform-survival-analysis-in-r/

One important (and difficult, I say) argument not covered by Mould’s text concerns longitudinal
experimental design, in which for instance we collect repeated measures on the same patient.
We introduce the difficulty by a simple didactical example. Alice and Ellen are twin, and they have
a silly question: have Alice and Ellen the same weight? They decide to measure themselves each
day at the same time with the same dress with the same weight scale, and the first day the situation
is: Alice, 73.60; Ellen, 73.80. So, have Alice and Ellen the same weight? Well, no from a pure
mathematical point of view. But, repeating for five days the experiment, the situation:

> alice = c(73.6, 73.4, 74.1, 73.5, 73.2)
> ellen = c(73.8, 73.5, 74.6, 73.8, 73.6)
> t.test(alice, ellen, var.equal = TRUE)

provide the 73.56 mean weight of Alice and 73.86 for Ellen, but such 0.30 Kg is not a significant
difference (t = -1.2227, df = 8, p-value = 0.2562). But, repeating for three weeks the measures, as
reported in the table below, the 73.66 Kg mean weight of Alice and 73.94 for Ellen provide a 0.28
Kg significant difference (t = -2.4594, df = 40, p-value = 0.01834).

> alice = c(73.6, 73.4, 74.1, 73.5, 73.2, 74.0, 73.6, 73.3, 74.2, 73.6,
73.4, 74.1, 73.6, 73.4, 74.1, 73.5, 73.2, 74.0, 73.6, 73.3, 74.2)
> ellen = c(73.8, 73.5, 74.6, 73.8, 73.6, 74.4, 73.8, 73.5, 74.3, 73.9,
73.6, 74.6, 73.8, 73.6, 74.4, 73.7, 73.5, 74.4, 73.9, 73.6, 74.5)
> t.test(alice, ellen, var.equal = TRUE)

Let us recap this strange situation: on the first day the difference was of 0.20 Kg, and we decided
this was a difference. After five days we decided that the 0.30 Kg was not a difference; after 21 days
0.28 Kg is a difference. All very strange! The explanation is that Alice and Ellen’s weights represent
a time series, as it happened in the airquality dataset; but in the latter, the measurments appeared
to be uncorrelated, while the Alice weight time series is obviously compounded by correlated data
[47] (and the same obviously occurs for Ellen): it is natural to expect that tomorrow’s Alice weight
will resemble the current value. The proper tools to manage these kind of data are the linear mixed
effects models [16, 50], in which the pseudoreplication is managed adding a further random effect.

https://www.datacamp.com/community/tutorials/survival-analysis-R
https://www.emilyzabor.com/tutorials/survival_analysis_in_r_tutorial.html
https://www.r-bloggers.com/steps-to-perform-survival-analysis-in-r/
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