P5.2 Statistics for Medicine

Massimo Borelli

Master of Advanced Studies in Medical Physics

Recap /1

1	To start	. 5
1.1	What are we talking about	5
1.1.1	Shifting Statistics from Physics to Medicine	. 6
1.2	Which is the 'best' software for medical statistics?	6
1.2.1	The R language	. 6
1.2.2	The R language user graphical interfaces	. 8
1.2.3	JASP	. 8
1.3	Exercises.	9
2	Data Presentation	11
<mark>2</mark> 2.1	Data Presentation Background	11 11
<mark>2</mark> 2.1 2.2	Data Presentation Background Descriptive Statistics in JASP	11 11 11
2 2.1 2.2 2.2.1	Data Presentation Background Descriptive Statistics in JASP Numerical summaries	11 11 11 13
2 2.1 2.2 2.2.1 2.2.2	Data Presentation Background Descriptive Statistics in JASP Numerical summaries A picture is worth a thousand words	11 11 13 15
2 2.1 2.2 2.2.1 2.2.2 2.3	Data Presentation Background Descriptive Statistics in JASP Numerical summaries A picture is worth a thousand words Which are 'the best' Descriptives?	11 11 13 15 17

Recap /2

3	Probability in medicine	19
3.1	Brief recalls on random variables	19
3.2	Commonly used random variables	20
3.2.1	The Normal Distribution	20
3.2.2	The Lognormal Distribution	23
3.2.3	The Binomial Distribution	24
3.2.4	The Poisson Distribution	25
3.3	Evaluating odds and risks: Bayes theorem	26
3.3.1	Bayes theorem	28
3.3.2	The Bayes factor	29
3.4	Sample and population: approaching inference	30
3.5	Mismatching variability with reliability	32
3.6	Exercises	35

Today

Ву Н. М. Снивв.

Not Kiln-Dried	Kiln-Dried	Difference
1903	2009	+106
1935	1915	-20
1910	2011	+101
2496	2463	-33
2108	2180	+72
1961	1925	-36
2060	2122	+62
1444	1482	+38
1612	1542	-70
1316	1443	+127
1511	1535	+24

Not Kiln-Dried	Kiln-Dried	Difference
1903	2009	+106
1935	1915	-20
1910	2011	+101
2496	2463	-33
2108	2180	+72
1961	1925	-36
2060	2122	+62
1444	1482	+38
1612	1542	-70
1316	1443	+127
1511	1535	+24

	difference
Valid	11
Mean	33.727
Std. Deviation	66.171
Std. Error of Mean	19.951

• Detecting a signal from noise

$$t = \frac{m - \mu}{s / \sqrt{n}}$$

33.727-0 66.171 -.690 9.951

Gosset discoveries /1

normal distribution does not work!

Gosset discoveries /2

$$t=\frac{m-\mu}{s/\sqrt{n}}$$

- (independency) in a random sample from a gaussian distribution $N(\mu, \sigma)$, estimating the sample mean *m* do not convey any information in estimating the sample standard deviation *s*, and vice versa.
- (a novel random variable) the random variable $t = \frac{m-\mu}{s/\sqrt{n}}$ possesses an explicit density function, which is not a gaussian, but can be numerically computed.

VOLUME VI

MARCH, 1908

No. 1

BIOMETRIKA.

THE PROBABLE ERROR OF A MEAN.

BY STUDENT.

JASP: Scaled Shifted Student's t

JASP: Classical One Sample T-Test

Table: One Sample T-Test

	t	df	р
difference	1.690	10	0.122

JASP: Classical One Sample T-Test

Table: One Sample T-Test

	t	df	р
difference	1.690	10	0.122

Ronald Fisher's idea on significance level

- O The conventional significance level of 5%
- O The freedom to choose the significance level
- significance level and sample size impact on the test power
- statistical or clinical significance?
- O Absence of evidence, or evidence of absence?

JASP: Classical One Sample T-Test

Table: One Sample T-Test

	t	df	р
difference	1.690	10	0.122

Table: Bayesian One Sample T-Test			st	Table: C	One Samı	ole T-	Test
	BF_{10}	error %			t	df	р
difference	0.885	0.004		difference	1.690	10	0.122

$$BF_{10} = \frac{P(D|M_1)}{P(D|M_0)} = 0.885$$

		Log _e BF ₁₀	Evidence	In favour of	
	>100	>4.6	Decisive	Alternative hypothesis	
	30 to 100	3.4 to 4.6	Very strong	Alternative hypothesis	
	10 to 30	2.3 to 3.4	Strong	Alternative hypothesis	
	3 to 10	1.1 to 2.3	Moderate	Alternative hypothesis	
	1 to 3	0 to 1.1	Anecdotal	Alternative hypothesis	
	1	0	No evidence	Neither	
	1 to 0.33	0 to -1.1	Anecdotal	Null Hypothesis	
	0.33 to 0.1	-1.1 to -2.3	Moderate	Null Hypothesis	
7	0.1 to 0.033	-2.3 to -3.4	Strong	Null Hypothesis	77
. /	0.033 to 0.01	-3.4 to -4.6	Very strong	Null Hypothesis	
V	<0.01	< -4.6	Decisive	Null Hypothesis	V

However, these are merely a simplified heuristic for interpreting Bayes factors, but that the Bayes factor really is a continuous metric of evidence.

A 2-sided Bayesian one-sample t-test comparing the sample population difference (m = 33.7) to the null mean ($\mu = 0$) returns a p-value = .122, not significant according an α level of 0.10. The BF_{01} of 0.885 suggests anecdotal evidence in favour of the alternative hypothesis: therefore the observed data are 1.13 times more likely to have occurred under the null than under the alternative hypothesis.