P5.2 Statistics for Medicine

Massimo Borelli

Master of Advanced Studies in Medical Physics

The Abdus Salam
International Centre
(CTP) International Centre

(1) Evaluating odds and risks

Frequencies

-	Des	$\text { tives } \frac{\mathrm{I}}{\mathrm{~T}-\mathrm{Te}}$	$\frac{\text { I' }{ }_{\text {I }}{ }^{V}}{}$	Mixed Models	Regressioh	Frequencies	Distri	R (Beta)
T	* logHE4	- $\log \mathrm{CA} 125$	* logCA19-9	* logCEA	yePatient	Classical	ology	
1	3.58	4.25	3.33	0.22		Binomial Test		
2	3.42	5.45	4.84	0.24		Multinomial Test		
3	5.68	4.72	3.2	0.92	64	Contingency Tables	n	
4	4.14	3.96	3.54	1.76	58			
5	3.57	3.03	-0.04	1.03	74	Bayesian		
6	3.7	4.11	3.44	0.58	40	Binomial Test		
7	7.17	7.58	2.45	0.44	51	A/B Test Multinomial Test	ant	
8	3.57	2.48	1.46	0.1	21	Contingency Tables		
9	3.97	3.64	2.3	0.14	27	Log-Linear Regression		
10	4.11	4.03	4.73	0.82	75	nost	ant	

Frequencies

Menopause

Histology ante post Total

$\begin{array}{llll}\text { benign } & 106 & 65 & 171\end{array}$

 malignant 12Total
118 92210

Table: Menopausal status is a predictor, or a confounder, of malignancy in ovarian cancer?

Odds Ratio

	Menopause		
Histology	ante	post	Total
benign	$\mathbf{1 0 6}$	65	171
malignant	12	27	39
Total	118	92	210

Example (Odds Ratio)

Explore the output of the Odds Ratio (2×2 only) checkbox in the Statistics menu of the contingency table of Histology (Rows) versus Menopause (Columns).

Bayes Theorem

$$
P(\text { malignant } \mid \text { ante })=\frac{P(\text { ante } \mid \text { malignant })}{P(\text { ante })} \cdot P(\text { malignant })
$$

	Menopause		
Histology	ante	post	Total
benign	106	65	171
malignant	$\mathbf{1 2}$	27	39
Total	$\mathbf{1 1 8}$	92	$\mathbf{2 1 0}$

- prevalence
- sensitivity and specificity
- predictive values
- ...
https://ictpmmp.weebly.com/lecture-notes.html
professor Luigi Rigon

the Bayes factor: JASP core business!

- Alice has a balanced urn with 5 winning black balls and 5 white balls $(p=0.5)$
- Bob has a tricky urn with 6 winning black balls and 4 white balls ($p=0.6$).
(binomial scheme, extractions with replacement) we observe 115 successes over 200 draws, but without knowing if they are generated from Alice's or Bob's urn.

the Bayes factor: JASP core business!

$$
\begin{aligned}
& P(X=115 \mid \text { Alice })=\binom{200}{115} \cdot 0.5^{115} \cdot 0.5^{200-115} \approx 0.006 \\
& P(X=115 \mid \text { Bob })=\binom{200}{115} \cdot 0.6^{115} \cdot 0.4^{200-115} \approx 0.044 \\
& \begin{array}{c|c|c}
R & \\
\hline
\end{array}
\end{aligned}
$$

```
> dbinom(115, 200, 0.5)
    [1] 0.005955892
> dbinom(115, 200, 0.6)
    [1] 0.04399862
```


the Bayes factor: JASP core business!

$$
\frac{P(X=115 \mid \text { Bob })}{P(X=115 \mid \text { Alice })} \approx \frac{.044}{.006} \approx 7.4
$$

it is much more likely that the balls have been drawned by Bob's urn: about seven times higher
the Bayes factor:

$$
\frac{P\left(D \mid M_{1}\right)}{P\left(D \mid M_{2}\right)}=\frac{P\left(M_{1} \mid D\right)}{P\left(M_{2} \mid D\right)} \cdot \frac{P\left(M_{2}\right)}{P\left(M_{1}\right)}
$$

