P5.2 Statistics for Medicine

Massimo Borelli

Master of Advanced Studies in Medical Physics

Frequencies

Ξ	Descrip	tives T-Tests		Mixed Models	Regression	Frequencies Fact	or Distributio	ons R (Beta)
T	📏 logHE4	📏 logCA125	📏 logCA19-9	📏 logCEA	AgePatient		B Histology	+
1	3.58	4.25	3.33	0.22	84	Binomial Test	benign	
2	3.42	5.45	4.84	0.24	21	Multinomial Test	benign	
3	5.68	4.72	3.2	0.92	64	Contingency Tables	malignant	
4	4.14	3.96	3.54	1.76	58	Log-Linear Regression	malignant	
5	3.57	3.03	-0.04	1.03	74	Hayesian	benign	
6	3.7	4.11	3.44	0.58	40	Binomial Test	benign	
7	7.17	7.58	2.45	0.44	51	A/B Test	malignant	
8	3.57	2.48	1.46	0.1	21	Contingency Tables	penign	
9	3.97	3.64	2.3	0.14	27	Log-Linear Regression	benign	
10	4.11	4.03	4.73	0.82	75	post	malignant	

	Meno		
Histology	ante	post	Total
benign	106	65	171
malignant	12	27	39
Total	118	92	210

Table: Menopausal status is a predictor, or a confounder, of malignancy in ovarian cancer?

Odds Ratio

	Meno		
Histology	ante	post	Total
benign	106	65	171
malignant	12	27	39
Total	118	92	210

Example (Odds Ratio)

Explore the output of the Odds Ratio $(2 \times 2 \text{ only})$ checkbox in the Statistics menu of the contingency table of Histology (Rows) versus Menopause (Columns).

Bayes Theorem

$$P(malignant|ante) = rac{P(ante|malignant)}{P(ante)} \cdot P(malignant)$$

	Meno		
Histology	ante	post	Total
benign	106	65	171
malignant	12	27	39
Total	118	92	210

prevalence

- sensitivity and specificity
- predictive values
- Ο ...

https://ictpmmp.weebly.com/lecture-notes.html

professor Luigi Rigon

the Bayes factor: JASP core business!

- Alice has a balanced urn with 5 winning black balls and 5 white balls (p = 0.5)
- Bob has a tricky urn with 6 winning black balls and 4 white balls (p = 0.6).

(binomial scheme, extractions with replacement) we observe 115 successes over 200 draws, but without knowing if they are generated from Alice's or Bob's urn.

the Bayes factor: JASP core business!

$$P(X = 115 | Alice) = {200 \choose 115} \cdot 0.5^{115} \cdot 0.5^{200-115} \approx 0.006$$
$$P(X = 115 | Bob) = {200 \choose 115} \cdot 0.6^{115} \cdot 0.4^{200-115} \approx 0.044$$


```
> dbinom(115, 200, 0.5)
[1] 0.005955892
> dbinom(115, 200, 0.6)
[1] 0.005955892
```

```
[1] 0.04399862
```

the Bayes factor: JASP core business!

$$\frac{P(X = 115| Bob)}{P(X = 115| Alice)} \approx \frac{.044}{.006} \approx 7.4$$

it is much more likely that the balls have been drawned by Bob's urn: about seven times higher

the Bayes factor:

$$\frac{P(D|M_1)}{P(D|M_2)} = \frac{P(M_1|D)}{P(M_2|D)} \cdot \frac{P(M_2)}{P(M_1)}$$