P5.2 Statistics for Medicine

Massimo Borelli

Master of Advanced Studies in Medical Physics

Finite random variables

The otitis dataset (number of episodes of otitis media in the first two years of life)

$$\begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 0.129 & 0.264 & 0.271 & 0.185 & 0.095 & 0.039 & 0.017 \end{pmatrix}$$

• probability mass / discrete density function

Example (graph)

Draw the barplot with JASP

Commonly used random variables

the Normal distribution

Probability Density Function

the Normal distribution

V Show Distribution	
Parameters $\mu, \sigma^2 \checkmark$ Mean: μ 0 Variance: σ^2 1	
Display	Options
🗸 Explanatory text	Range of x from -3 to 3
Parameters, support, and moments	Highlight
Probability density function	🗸 Density 🔽 Probability
Cumulative distribution function	Interval
Quantile function	from 0 to 1
_	O from -∞ to 0
	○ from 0 to ∞

the Normal distribution

Example (B. Rosner, example 5.22)

The cerebral blood flow (CBF) in the general population is, approximately, normally distributed with mean $\mu = 75$ and standard deviation $\sigma = 17$. Which could be the percentage of persons having a CBF < 40?

the Normal distribution

Example (B. Rosner, example 5.23)

Glaucoma is characterized by intraocular pressure greater than 20 mmHg, while in normal population intraocular pressure X has mean $\mu = 16$ and standard deviation $\sigma = 9$. How much it could be $P(12 \le X \le 20)$?

the Normal distribution

Example (B. Rosner, example 5.24)

In adult male, the diastolic pressure is normally distributed with mean $\mu = 80$ and variance $\sigma^2 = 144$. Find the upper and the lower fifth percentile.

the Normal distribution: the QQ plot

S. Najaf the roma dataset

- Histology
- AgePatient
- Menopause status
- four biomarkers (log transformed):
 - logHE4,
 - logCA125
 - logCA19.9
 - logCEA

the Normal distribution

the Normal distribution

caveat: the Normal distribution

Do two dromedaries make a camel? Bernard Rosner

.. linear combination of normal random variables are often of specific concern. It can be shown that any linear combination of normal random variables is itself normally distributed.

Martin Bland:

... If we add two variables from Normal distributions together, even with different means and variances, the sum follows a Normal distribution.

caveat: the Normal distribution

Do two dromedaries make a camel?

Massimo Borelli P5.2 Statistics for Medicine

caveat: the Normal distribution

C. Kowalski. 1973 Non-Normal Bivariate Distributions with Normal Marginals https://www.tandfonline.com/doi/abs10.1080/00031305.1973.10479002

the log-Normal distribution

Probability Density Function

Density Plot

Eckhard Limpert, et al. Log-normal Distributions across the Sciences: Keys and Clues https://academic.oup.com/bioscience/article/51/5/341/243981

Massimo Borelli P5.2 Statistics for Medicine

the logNormal distribution

Distribution of BMI values. A histogram of the BMI values (expressed in kilograms per square meter) among the 108927 hospitalization

Example (Gregg Fonarow et al. - summarizing body mass index)

Suppose that you are required to lead a pilot study concerning radiation dosimetry in 25 obese patients. How do you think you are going to describe the data? Using the mean and the standard deviation, or the median and the quartiles? What are here the difficulties?

the binomial distribution

Free parameter	Fixed parameter
Probability of success: p 0.186	Number of trials: n 210
Display	Options
Explanatory text	Range of x from 20 to 60
Parameters, support, and moments	Highlight
Probability mass function	🗌 Mass 🛛 Cumulative Probability
Cumulative distribution function	Interval $30 \le X \le 50$

Example (probability)

Suppose that you collect a new sample of 210 women with the same symptoms of those enrolled in roma. Obviously, only by chance you will observe exactly '39' malignancies. Can you compute the probability to observe a number of malignancy between 30 and 50?

the Poisson distribution

1				1	2
2	3	1	2	1	
	1		2		1
1	1	2		4	1
1		1		3	1
	2	1	1		

Example (probability)

Use JASP to discover in a $\lambda = 0.37$ Poisson distribution how many, in probability, cells could have a value greater or equal than 2.

the Poisson distribution

